وردایی زمانی- مکانی و نقطه تغییر شاخص جذب هواویز (AAI) ایران مبتنی بر برونداد سنجنده های TOMS و OMI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

هدف از این پژوهش وردایی زمانی-مکانی و نقطه تغییر شاخص هواویز (AI) فصلی در ایران است. در این راستا داده­های سنجنده TOMS دو ماهواره Nimbus 7 (1979-1992) و Earth Probe (1996-2005) و سنجنده OMI (2005-2015) ماهواره EOS Aura اخذ و از آزمون Buishand برای شناسایی نقطه تغییر شاخص هواویز استفاده شد. نتایج نشان داد بیشینه شاخص هواویز در دوره گرم سال و بهار به‌دلیل کاهش میزان رطوبت خاک و فعال شدن چشمه­های گردوخاک، بیشینه شاخص هواویز فصلی را دارا می­باشد. همچنین فصل زمستان به‌دلیل اثر کنترلی بارش مقدار هواویز کمتری را دارا است. گردش منطقه­ای وردسپهر نیز نقش شایان توجهی در وردایی هواویزها در ایران دارند به‌طوری‌که  باد شمال تابستانه، الگوهای دینامیکی و گرمایی غرب آسیا و کم‌فشار گرمایی سِند بیشترین نقش را در افزایش هواویزهای ایران دارند. همچنین شاخص هواویز (AI) حساسیت بالایی به ارتفاع لایه مرزی وردسپهر دارد چرا که بیشینه ارتفاع لایه مرزی با مناطقی است که شار گرمایی قابل‌ملاحضه­ای وجود داشته باشد و شار گرمای نهان به‌علت فقدان پوشش گیانی و منابع آب کم است. میانگین شاخص هواویز (AI) پس از نقطه تغییر بیشتر از پیش از نقطه تغییر بوده است که نشان‌دهنده افزایش شاخص هواویز در ایران است. سال­های 1983، 2000 و 2007 به­ترتیب برای ماهواره­های Nimbus7، EP و Aura به‌عنوان سال­های میانگین جهش در سری زمانی تشخیص داده شدند که می­توان این سه سال را به‌عنوان گرانیگاه دوره فعال و غیرفعال شاخص هواویز در ایران در دوره مورد مطالعه یاد کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatio-temporal variation and change point of Iran Aerosol absorption index (AAI) based on the output of TOMS and OMI sensors

نویسندگان [English]

  • Abbas Ali Dadashi Roudbari 1
  • Mahmoud Ahmadi 2
1 Ph.D. Student, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Associate Professor, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Aerosols are solid or liquid particles in the air with a typical radius of 0.001 to 100 μm, which have a significant and harmful effect on human health. Aerosols come from both natural and human sources, and in recent years, human activities associated with urbanization and industrialization have led to a steady increase in the amount of these particles in the airborne state. Since the effect of aerosols on airborne processes is more intense in the ultraviolet group, the Aerosol Index (AI) is a useful and accurate method for detecting ultraviolet absorbing humus, such as soot and dust. The positive AI indicator represents aerosols, clouds are close to zero, and negative values are the absence of humus or due to the presence of non-absorbent particles in the UV group. The aim of this study was to investigate the spatio-temporal retrieval of the TOMS and OMI sensors in Iran. The results of this research can be useful in identifying seasonal sources of dust, critical areas and ultimately its feedback in the climate system for future studies.
TOMS Nimbus 7 (TOMSN7L3 v008) data was used during the period 1979 to 1992; TOMS EP (TOMSEPL3 v008); 1996 to 2005; and OMI (OMTO3d v003) for the period of 2005 to 2015. In this research, the change of AAI index was studied using the Buishand test. After decoding the necessary data and calculations, the maps of each in the ARCGIS environment were mapped using the inverse distance-weighted method (IDW) with the least amount of Root Mean Square Error (RMSE).
For each of the three satellites data, spring and summer, the highest amount of statistical data is the mean and maximum. The range of changes also increases naturally in the seasons with the mean peak, which is the maximum range of spring and summer changes. Seasonal changes of the amount of AI in Iran is due to a synergy in terms of emissions and atmospheric conditions. Winter AI has its non-alternating pattern synoptic systems that affect Iran during the cold season, especially winter is mainly, due to significant rainfall and humidity that, reduce AI. This is the most important factor that has caused the regions of central Iran to have fewer highs than those of the southeast to southwest of Iran. Therefore, the height of the boundar layer in very dry areas and the central regions of the desert naturally is higher than wetland areas of the desert, resulting in a higher value of Aerosol index (AI). So, in none of the three satellites data set studied after the average change point was less than before the change point, which indicates a significant increase in the aerosol in Iran's airspace.
The results of the study have shown that in each of the three satellites data set studied, the warm- period has the maximum Aerosol index (AI). Seasonal variation of the aerosol index in Iran is due to the mixing of airborne aerosol the spring it has been shown  the activation of the regional dust sources. The minimum amount of Aerosol Index (AI) occurred in winter, possibly due to increased precipitation in the studied area. Rainfall has two important control effects on dust storm activity. 1-From soil moisture and 2-vegetation. Dust loads in the vast area of Iran can be classified into three general categories: 1-Urban/industrial activities and biomass burning (mainly in Isfahan, Tabriz, Tehran and Khuzestan), 2. Dust transport of desert areas and semi-arid (mainly arid and semiarid areas of Iraq, Syria, Saudi Arabia and North Africa) and 3) marine environments. The regional role of the atmosphere in the release and transport of aerosols to Iran plays a significant role, in the middle of spring until late summer, a small area of thermal low is formed inside Iran and Saudi Arabia, and this leads to strong pressure gradient responsible for the creation of northwesterly winds. The point of change in the annual Aerosol Absorption Index (AAI) by the Buishand test has shown that the Aerosol Index has been upgraded based on three satellite data and two sensors, so that the mean Aerosol Index (AI) after the change point in every three  satellite and the two sensors data surveyed that have more the change point than before.

کلیدواژه‌ها [English]

  • Aerosol Index (AI)
  • TOMS Sensor
  • OMI Sensor
  • Buishand Test
  • Iran
احمدی، م.، و داداشی رودباری، ع.، 1397، آشکارسازی روند و نقطه تغییر گردوخاک با استفاده از شاخص جذب هواویز (AAI) در پهنه­های کلان آب‌و‌هوایی ایران مبتنی بر برونداد داده­های سنجش از دور، هفتمین همایش ملی مدیریت آلودگی هوا و صدا، 8 و 9 بهمن 1397 دانشگاه شهید بهشتی، تهران.
احمدی، م.، داداشی ‌‌رودباری، ع. و احمدی، ح.، a 1398، واکاوی وردایی زمانی-مکانی ارتفاع لایه ‌‌مرزی ایران مبتنی ‌بر برونداد پایگاه داده مرکز پیش‌‌بینی میان‌‌مدت وردسپهر اروپایی (ECMWF)، فصلنامه جغرافیا و توسعه، 17 (54)، 163-184.
احمدی، م.، داداشی رودباری، ع. و جعفری، م.، b1398، تأثیر ارتفاع لایه‌مرزی در طوفان‌های گردوخاک جنوب غرب ایران (مطالعه موردی 21 تا 24 فوریه 2016)، مخاطرات محیط طبیعی، 8 (19)، 151-174.
ارجمند، م.، راشکی، ع. و سرگزی، ح.، 1397، پایش زمانی و مکانی پدیده گردوخاک با استفاده از داده‌های ماهواره­ای در جنوب شرق ایران، با تأکید بر منطقه جازموریان، فصلنامه علمی-پژوهشی اطلاعات جغرافیایی سپهر، 27 (106)، 153-168.
انصافی­مقدم، ط.، خوش­اخلاق، ف.، شمسی­پور، ع.ا.، اخوان، ر.، صفرراد، ط. و امیراصلانی، ف.، 1396، پایش و ارزیابی اثرات گردوخاک بر تغییرات بارش در جنوب­غرب ایران با استفاده از سنجش از دور و GIS، سنجش از دور و GIS ایران، 9 (2)، 79-98.
بیات، ع.، 1392، دسته بندی هواویزهای جوی با استفاده از داده­های قطبیده شیدسنج خورشیدی، پایان نامه دکتری، دانشکده علوم پایه، دانشگاه تحصیلات تکمیلی علوم پایه زنجان.
خوش اخلاق، ف.، نجفی، م. س. و صمدی، م.، 1391، واکاوی همدید رخداد گردوخاک بهاره در غرب ایران. پژوهشهای جغرافیای طبیعی.، 44 (2)، 99-124.
علیزاده­چوبری، ا. و نجفی، م. س.، 1396، روند تغییرات دمای هوا و بارش در مناطق مختلف ایران، فیزیک زمین و فضا، 43 (3)، 569-584.
Ahmadi, M. and DadashiRoudbari, A., 2017, Regional modeling of dust storm of February 8, 2015 in the southwest of Iran, Arabian Journal of Geosciences, 10(21), 459.
Alizadeh‐Choobari, O., Ghafarian, P. and Owlad, E., 2016, Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. International Journal of Climatology, 36(4), 2050-2062.
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P. K. and Singh, D., 2013, Trends in aerosol optical depth over Indian region: Potential causes and impact indicators, Journal of Geophysical Research: Atmospheres, 118(20).
Badarinath, K. V. S., Kharol, S. K., Kaskaoutis, D. G. and Kambezidis, H. D., 2007, Dust storm over Indian region and its impact on the ground reaching solar radiation—a case study using multi-satellite data and ground measurements, Science of the Total Environment, 384, 316-332.
Baddock, M. C., Bullard, J. E. and Bryant, R. G., 2009, Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7), 1511-1528.
Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J. and Spurr, R., 2015, Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmospheric Chemistry and Physics, 15(10), 5743.
Buishand, T. A., 1982, some methods for testing the homogeneity of rainfall records, Journal of hydrology, 58(1-2), 11-27.
de Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A. K., Alexandri, G., Amiridis, V., Proestakis, E., Marinou, E. and Xue, Y., 2018, Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns, Atmospheric Chemistry and Physics, 18(3), 1573.
Deroubaix, A., Martiny, N., Chiapello, I. and Marticoréna, B., 2013, Suitability of OMI aerosol index to reflect mineral dust surface conditions: Preliminary application for studying the link with meningitis epidemics in the Sahel, Remote sensing of environment, 133, 116-127.
Goudie, A. S. and Middleton, N. J., 2006, Desert dust in the global system. Springer Science & Business Media.
Habib, G., Venkataraman, C., Chiapello, I., Ramachandran, S., Boucher, O. and Reddy, M. S., 2006, Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: Relationship to regional meteorology and emissions, Atmospheric Environment, 40(11), 1909-1921.
Herman, J. R. and Celarier, E. A., 1997, Earth surface reflectivity climatology at 340–380 nm from TOMS data, Journal of Geophysical Research: Atmospheres, 102(D23), 28003-28011.
Hu, K., Kumar, K. R., Kang, N., Boiyo, R. and Wu, J., 2018, Spatiotemporal characteristics of aerosols and their trends over mainland China with the recent Collection 6 MODIS and OMI satellite datasets, Environmental Science and Pollution Research, 25(7), 6909-6927.
IPCC 2013, In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate Change 2013: the Physical Science Basis Exit EPA Disclaimer, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, U. K. and New York, NY, USA.
IPCC, Climate Change 2007, the Physical Science Basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University, 2007.
Israelevich, P. L., Levin, Z., Joseph, J. H. and Ganor, E., 2002, Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index, Journal of Geophysical Research: Atmospheres, 107(D21), AAC-13.
James Gauderman, W., McConnell, R.O.B., Gilliland, F., London, S., Thomas, D., Avol, E., Vora, H., Berhane, K., Rappaport, E. B., Lurmann, F. and Margolis, H. G., 2000, Association between air pollution and lung function growth in southern California children, American journal of respiratory and critical care medicine, 162(4), 1383-1390.
Kaskaoutis, D. G., Nastos, P. T., Kosmopoulos, P. G., Kambezidis, H. D., Kharol, S. K. and Badarinath, K. V. S., 2010, The aura–OMI aerosol index distribution over Greece, Atmospheric Research, 98(1), 28-39.
Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L. and Lelieveld, J., 2016, Aerosol optical depth trend over the Middle East, Atmospheric Chemistry and Physics, 16(8), 5063-5073.
Mahowald, N. M. and Dufresne, J. L., 2004, Sensitivity of TOMS aerosol index to boundary layer height: Implications for detection of mineral aerosol sources, Geophysical Research Letters, 31(3).
Namdari, S., Valizade, K. K., Rasuly, A. A. and Sarraf, B. S., 2016, Spatio-temporal analysis of MODIS AOD over western part of Iran, Arabian Journal of Geosciences, 9(3), 191.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. and Gill, T. E., 2002, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Reviews of geophysics, 40(1), 2-1.
Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., Rautenbach, C. D. W., Flamant, C. and Vishkaee, F. A., 2014, Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations, Natural hazards, 71(1), 563-585.
Schepanski, K., 2018, Transport of mineral dust and its impact on climate. Geosciences, 8(5), 151.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z. and Gleason, J., 1998, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, Journal of Geophysical Research: Atmospheres, 103(D14), 17099-17110.