تغییرات فصلی ستون قائم آب و تخمین عمق لایه آمیخته بر پایه دما با استفاده از روش آستانه در منطقه بابلسر و رامسر

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه فیزیک دریا، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 استادیار، گروه فیزیک دریا، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

3 استادیار، گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

چکیده

در این تحقیق تغییرات فصلی و مکانی عمق لایه آمیخته و ساختار قائم دما و شوری در آب­های نزدیک به ساحل دریای خزر در منطقه بابلسر و رامسر در سه فصل بهار، تابستان و پاییز سال 1391 با استفاده از اندازه­گیری­های CTD مورد بررسی قرارگرفت. با وجود مشابهت محدوده تغییرات دما و شوری در دو منطقه اندازه­گیری، نوسانات شوری در بابلسر بالاتر از رامسر و در فصل بهار شوری در لایه سطحی در رامسر به‌شکل قابل‌توجهی کمتر از بابلسر است. هالوکلاین تقریباً هم­عمق ترموکلاین قرار داشته و به‌شکل نوسانات شدید شوری خود را نشان می­دهد. برای تخمین عمق لایه آمیخته از روش آستانه و با آستانه­های (C˚) 05/0، (C˚) 5/0، (C˚) 1 و (C˚) 25/1 استفاده شد. بدون در نظرگرفتن تفکیک فصلی مقدار آستانه (C˚) 25/1 عمق لایه آمیخته را بهتر از مقادیر دیگر آستانه تخمین زد. در نهایت الگوریتم ترکیبی به‌تفکیک فصل، با آستانه (C˚) 25/1 در بهار، 1 (C˚) در تابستان و مقدار آستانه (C˚) 5/0 در فصل پاییز برای تخمین عمق لایه آمیخته مورد استفاده قرار گرفت. کمینه و بیشینه عمق لایه آمیخته به‌ترتیب در بهار و پاییز مشاهده شد و طبق نتایج به‌دست‌آمده، ساختار قائم لایه آمیخته را می­توان به سه نوع، کلاسیک در پاییز، شیب­دار در بهار و پله‌ای در تابستان تقسیم کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seasonal variations of the water column structure and estimation of the mixed layer depth based on the temperature using threshold method in Babolsar and Ramsar regions

نویسندگان [English]

  • Fatemeh Jannar Fereidouni 1
  • Somayeh Nahavandian Esfahani 2
  • Nematollah Mahmoudi 3
1 M.Sc. Student, Department of Marine Physics, Faculty of Natural Resources and Marine Sciences, Tarbiat Modarres University, Nur, Iran
2 Assistant Professor, Department of Marine Physics, Faculty of Natural Resources and Marine Sciences, Tarbiat Modarres University, Nur, Iran
3 Assistant Professor, Department of Fisheries Science and Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modarres University, Nur, Iran
چکیده [English]

The physical processes play an important role on the biochemical phenomenal in the seas and oceans. The Mixed layer is the surface layer in which due to the air-sea exchange, the physical parameters such as temperature, salinity and density are almost constant. The layer beneath the mixed layer where the gradient of the physical parameters is large, is called thermocline, halocline and pycnocline, respectively in the temperature, salinity and density profiles. The deep part is the deepest layer where the physical parameters are nearly constant. Because the mixed layer acts as an interface between the atmosphere and deeper layers of the sea, its depth is not only influenced by weather but also strongly impacts the climate change. The mixed layer depth (MLD) has an important role in biochemical processes, gas exchanges, transferring heat, mass and momentum between the atmosphere and the sea. In this study seasonal and spatial variations of the MLD as well as the temperature and the salinity profiles are investigated in the Southern Caspian Sea in the Babolsar and Ramsar regions based on the Conductivity-Temperature-Depth (CTD) measurements conducted during fall, spring and summer 2012. According to the observations, despite the fact that the range of variations of the temperature and the salinity in the Babolsar and Ramsar is comparable, during the spring the salinity fluctuation inside the halocline is larger in Babolsar. It is worth to mention that the salinity fluctuates highly inside the halocline, contrary to the classic definition that the salinity increases with depth inside the halocline. The MLD has been estimated using the threshold method with four different threshold values (0.05, 0.5, 1 and 1.25 (°C)). In order to avoid erroneous estimation of MLD (very extreme values), each temperature profile is also carefully examined by visual investigation. Then visual inspection and statistical analysis approaches have been employed to assess the most appropriate threshold value. To this end, calculated MLDs using different threshold values have been plotted against visual MLDs. Large number of points away from line of 45° shows that the calculated MLDs using related threshold value is biased against visual MLDs. While the largest number of points around 45° line demonstrates that the MLDs estimated by both methods are similar to each other and the considered threshold value is an appropriate one. The results reveal that the seasonal hybrid algorithm with threshold values of 0.5 (°C) for fall, 1 (°C) for summer, and 1.25 (°C) for spring gives the best estimation for the MLDs. The calculated MLDs show that the MLD is maximum in the fall and minimum in the spring which is in agreement with Jamshidi et al. (2010). The reason for a deeper MLD in the summer compared to the spring can be related to the high evaporation during this season, which leads to salinity increase at the surface and augmentation of the convection. Spatial comparison of the MLDs in Babolsar and Ramsar regions shows that the MLD is slightly deeper in Ramsar and the gradient of the temperature just below the mixed layer in Ramsar is larger compared with that in Babolsar. The vertical structure of the mixed layer can be sub-divided into three principle types: the classical, stepwise and inclined types. The classical and stepwise type profiles are similar to the results reported by Tai et al. (2017) conducted in the principle northern South China Sea. The classical type has quasi isothermal mixed layer followed by a steep thermocline which is the most observed in the fall. In the stepwise type, the temperature decreases inside the mixed layer with one or more small steps before drastical decrease in the seasonal thermocline. The stepwise type has been observed more often during the summer. Finally in the inclined type which is occurred in the spring, the MLD’s temperature gently decreases with depth followed by an abrupt decrease of the temperature in the thermocline.

کلیدواژه‌ها [English]

  • Caspian Sea
  • Babolsar
  • Ramsar
  • Mixed layer
  • Mixed layer depth
پیرنیا، ع. و حبیب نژاد روشن، م. و سلیمانی، ک.، 1391، بررسی تغییرات دما و بارندگی در سواحل جنوبی دریای خزر و مقایسه آن با تغییرات درمقیاس جهانی و نیمکره شمالی. پ‍‍ژوهشنامه مدیریت حوزه آبخیز. ۱۳۹۴، ۶ (۱۱)، ۹۰-۱۰۰
علیزاده کتک لاهیجانی، ح.، نادری بنی، ع، مهدی­پور، ن.، عباسیان، ه.، صالح، ا.، پورکرمان، م.، گریوانی، ه.، امجدی، ص.، حسین­دوست، م.، حبیبی، پ.، رمضانی، ا.، رهنما، ر.، حمزه­پور، ع.، سید ولی زاده، م. م.، شیجونی فومنی، ن. و دالوند، م.، 1393، پایش محیطی و پردازش داده های دریایی خزر، گزارش نهایی طرح تحقیقاتی، انتشارات پژوهشگاه ملی اقیانوس­شناسی و علوم جوی، پژوهشکده علوم دریایی، 730.
Afsharian, S. and Taylor, P. A., 2019, On the potential impact of Lake Erie wind farms on water temperatures and mixed layer depths: Some preliminary 1‐D modelling using COHERENS. Journal of Geophysical Research: Oceans.
Dawson, C. W., Abrahart, R. J. and See, L. M., 2007, HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling and Software, 22(7), 1034-1052.
De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. and Iudicone, D., 2004, Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology. Journal of Geophysical Research: Oceans, 109 (C12).
D'Ortenzio, F., Lavigne, H., Besson, F., Claustre, H., Coppola, L., Garcia, N. and Morin, P., 2014, Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment. Geophysical Research Letters, 41(18), 6443-6451.
Dutkiewicz, S., Follows, M., Marshall, J. and Gregg, W. W., 2001, Interannual variability of phytoplankton abundances in the North Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 48, 2323-2344.
Gaube, P., J. McGillicuddy Jr, D. and Moulin, A. J., 2019, Mesoscale eddies modulate mixed layer depth globally. Geophysical Research Letters, 46(3), 1505-1512.
Falkowski, P. G., Barber, R. T. and Smetacek, V., 1998, Biogeochemical controls and feedbacks on ocean primary production. Science, 281(5374), 200-206.
Jamshidi, S., Bakar, A. and Noordin, M, 2010, Temperature, salinity and density measurements in the coastal waters of the Rudsar, South Caspian Sea. Journal of the Persian Gulf. 2010. 1(1), 36-27.
Kantha L. and Clayson C. A., 2003, Ocean Mixed Layer, Encyclopedia of Atmospheric Sciences,: 291-.892.
Kara, A. B., Rochford, P. A. and Hurlburt, H. E., 2000, An optimal definition for ocean mixed layer depth. Journal of Geophysical Research: Oceans, 105(C7), 16803-16821.
Keerthi, M. G., Lengaigne, M., Vialard, J., de Boyer Montégut, C. and Muraleedharan, P. M., 2013, Interannual variability of the Tropical Indian Ocean mixed layer depth. Climate dynamics, 40(3-4), 743-759.
Kelly, K. A. and Qiu, B., 1995, Heat flux estimates for the western North Atlantic. Part I: Assimilation of satellite data into a mixed layer model. J. Phys. Oceanogr., 25, 2344-2360.
Kostianoy, A. G. and Kosarev, A. N. (Eds.)., 2005, The Caspian Sea Environment (Vol. 5). Springer Science and Business Media.
Lamb, P. J., 1984, On the mixed layer climatology of the north and tropical Atlantic. Tellus A, 36, 292-305.
Lavigne, H., D'Ortenzio, F., Migon, C., Claustre, H., Testor, P., d'Alcalà, M. R., Lavezza, R., Houpert, L. and Prieur, L., 2013, Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology. Journal of Geophysical Research: Oceans, 118, 3416-3430.
Lukas, R. and Lindstrom, E., 1991, The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 96(S01), 3343-3357.
Manly, B. F. and Alberto, J. A. N., 2016, Multivariate statistical methods: a primer. Chapman and Hall/CRC.
Monterey, G. I. and S. Levitus, 1997, Seasonal Variability of Mixed Layer Depth for the World Ocean, NOAA at­las Nesdis, Vol. 14, U. S. Dept. of Commerce, National Oceanic and Atmosphereric Administration, Washing­ton, D.C., 100 pp.
Nahavandian E. S., 2014, Temporal and spatial evolution of the mixed layer in the southern Beaufort Sea and the Amundsen Gulf. Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique (INRS).
Obata, A., J. Ishizaka and M. Endoh, 1996, Global verifica­tion of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res., 101, 20657-20667, doi: 10.1029/96JC01734.
Oey, L., Chang, Y. L., Lin, Y. C., Chang, M. C., Xu, F. and Lu, H. F., 2012, ATOP-The advanced Taiwan Ocean Prediction System based on the mpiPOM. Part1: Model Descriptions, Analysis and Results, Terr. Atmos. Sci ; Vol. 24, No. 1, 137-158.
Papadakis, J. E., 1981, Determination of the wind mixed layer by an extension of Newton’s method. Pacific Marine Sci. Rep. 81-9, Institute of Ocean Sciences, Sidney, BC, Canada.
Peeters, F., Kipfer, R., Achermann, D., Hofer, M., Aeschbach-Hertig, W., Beyerle, U., Imboden, D. M., Rozanski, K. and Fröhlich, K., 2000, Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep Sea Research Part I: Oceanographic Research Papers, 47(4), 621-654.
Pickart, R. S., Torres, D. J. and Clarke, R. A., 2002, Hydrography of the Labrador Sea during active convection. Journal of Physical Oceanography, 32, 428-457.
Price, J. F., Weller, R. A. and Pinkel, R., 1986, Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. Journal of Geophysical Research: Oceans, 91(C7), 8411-8427.
Qu, T., Du, Y., Gan, J. and Wang, D., 2007, Mean seasonal cycle of isothermal depth in the South China Sea. Journal of Geophysical Research: Oceans, 112(C2).
Schneider, N. and Müller, P., 1990, The meridional and seasonal structures of the mixed-layer depth and its diurnal amplitude observed during the Hawaii-to-Tahiti Shuttle experiment. Journal of physical oceanography, 20, 1395-1404.
Simpson, J. H. and Sharples, J., 2012, Introduction to the physical and biological oceanography of shelf seas. Cambridge University Press.
Stewart, R. H., 2008, Introduction to physical oceanography. Robert H. Stewart.
Tai, J. H., Wong, G. T. and Pan, X., 2017, Upper water structure and mixed layer depth in tropical waters: The SEATS station in the northern South China Sea. Terrestrial Atmospheric and Oceanic Sciences, 28(6).
Thompson, R. O., 1976, Climatological numerical models of the surface mixed layer of the ocean. Journal of Physical Oceanography, 6(4), 496-503.
Thomson, R. E. and Fine, I. V., 2003, Estimating mixed layer depth from oceanic profile data. Journal of Atmospheric and Oceanic Technology, 20, 319-329.
Toole, J. M., Timmermans, M. L.,Perovich, D. K., Krishfield, R. A., Proshutinsky, A. and RichterMenge, J. A., 2010, Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. Journal of Geophysical Research: Oceans, 115(C10).
Wagner, R. G., 1996, Mechanisms controlling variability of the interhemispheric sea surface temperature gradient in the tropical Atlantic. Journal of Climate, 9(9), 2010-2019.
Weller, R. A. and Plueddemann, A. J., 1996, Observations of the vertical structure of the oceanic boundary layer. Journal of Geophysical Research: Oceans, 101(C4), 8789-8806.
Wyrtki, K., 1964, The thermal structure of the eastern Pacific Ocean. Dtsch. Hydrogr. Z., 8A, 6–84.
Xu, Y., Cahill, B., Wilkin, J. and Schofield, O., 2013, Role of wind in regulating phytoplankton blooms on the Mid-Atlantic Bight. Continental Shelf Research, 63, S26-S35.
Yeh, S. W., Yim, B. Y., Noh, Y. and Dewitte, B., 2009, Changes in mixed layer depth under climate change projections in two CGCMs. Climate dynamics, 33(2-3), 199-213.