تحلیل اکتشافی و مطالعه ناهمگنی سری‌های دما و بارش ایستگاه‌های هواشناسی ایران (بازه زمانی 2018-1989)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار، پژوهشکده اقلیم‌شناسی، مشهد، ایران

4 کارشناس ارشد، پژوهشکده اقلیم‌شناسی، مشهد، ایران

چکیده

داده‌های دیده‌بانی شده در ایستگاه‌های هواشناسی زیربنای گستره وسیعی از برنامه‌­ریزی­ها، مطالعات کاربردی و مدل­سازی­ها در زمینه­ها و علوم مختلف می‌باشند و استفاده از این داده‌ها در مطالعات و برنامه‌ریزی‌ها بدون اطمینان از صحت (Accuracy) و همگن بودن (Homogeneity) داده­ها می‌تواند منجر به نوعی عدم‌قطعیت (Uncertainty) در نتایج به‌دست‌آ‌مده شود. بنابراین با توجه به اهمیت پارامترهای دما و بارش، در این مقاله سری­های زمانی دمای کمینه و بیشینه و بارش روزانه در ایستگاه­های هواشناسی کشور با رویکرد تحلیل اکتشافی و بررسی ناهمگنی در دوره زمانی 30 ساله (2018-1989) مورد ارزیابی قرار گرفته است. بررسی­ها نشان داد در سری­های زمانی 30 ساله از بین 134 ایستگاه به‌طور میانگین ایستگاه­های هواشناسی کشور در مورد دمای بیشینه 3 درصد، دمای کمینه 4 درصد، و بارش روزانه دارای 2 درصد داده گم شده می­باشند. در این سری زمانی برای پارامتر دمای بیشینه تعداد 63 مورد داده پرت تشخیص داده شد، که 53 مورد آن مربوط به ایستگاه ژئوفیزیک دانشگاه تهران بود. برای دمای کمینه این عدد به 50 مورد رسید که 11 مورد آن متعلق به ایستگاه ژئوفیزیک دانشگاه تهران می­باشد. برای پارامتر بارش در این دوره تعداد 13 مورد داده پرت تشخیص داده شد، که 5 مورد آن به ایستگاه ژئوفیزیک دانشگاه تهران مربوط است. برای پارامتر دمای روزانه در این دوره (بدون احتساب ایستگاه ژئوفیزیک)، 89 ایستگاه همگن و 44 ایستگاه دارای یک یا دو نقطه شکستگی بودند و برای پارامتر بارش نیز در همین دوره، 15 ایستگاه ناهمگن شناخته شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Exploratory analysis and in-homogeneity study of temperature and rainfall series of meteorological stations in Iran (period 1989-2018)

نویسندگان [English]

  • Mohsen Rahmdel 1
  • Seyed Hossein Sanaeinejad 2
  • Zohreh Javanshiri 3
  • Azadeh Mohamadian 4
1 Ph.D. Student, Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University Mashhad, Mashhad, Iran
2 Professor, Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University Mashhad, Mashhad, Iran
3 Assistant Professor, Climatological Research Institute, Mashhad, Iran
4 M.Sc., Climatological Research Institute, Mashhad, Iran
چکیده [English]

In-situ observations underlies a wide range of planning, applied studies and modeling in various fields and sciences, and using this data in studies and planning without ensuring the accuracy and homogeneity of them, can lead to uncertainty in the results. Major problems that researchers face are the poor quality data, missing data, outliers and in-homogeneity in time series. Inappropriate co-locating of stations, human errors in reading and recording data, errors in measuring equipment, changes in measurement tools, different methods of observation, non maintenance and calibration of equipment, constructions around the stations, changes in the type of instruments and sensors for atmospheric parameters measurements and station relocation during the statistical period are problems that affect the accuracy and homogeneity of the meteorological data. Therefore, in this paper, the minimum and maximum daily temperature series and daily rainfall series at 134 weather stations in Iran were analyzed for outliers and homogeneity over the period 1989-2018. First, Iran was divided into 5 clusters based on climatic characteristics. After clustering, the daily maximum and minimum temperatures and daily rainfall data were statistically analyzed using SPSS software and the percentage of missing data was determined separately for each station. Then, Climatol package in R software was used to study outliers, in-homogeneity and homogenization. In each cluster, the series are re-clustered based on the needed parameter, and for each station, the other stations belonging to that cluster are considered as reference stations. Based on this algorithm, first the desired series is estimated and standardized by reference series by type (II) regression method. After estimating the series, the standardized anomaly series is calculated, in which the difference between the observed and estimated values is calculated. For detecting outliers, two steps were followed. Original data corresponding to standardized anomalies that were greater than the prescribed thresholds, were detected as outliers. In the second step, in order to ensure the correct detection of the outliers, for temperature series the detected outliers in the first step were compared with the values of the days before and after. If they differed significantly, they would be accepted as outliers and deleted. For the precipitation series, the atmospheric condition of the desired dates were checked. For detection of in-homogeneity, the standard normal homogeneity test (SNHT) was performed on the monthly series. If the SNHT test statistic was greater than the prescribed threshold, the series was split at the point of maximum SNHT and all the data before the break were transferred to a new series with the same geographic coordinates. This process was repeated until all series were homogeneous. If break points were confirmed by metadata, they would then be accepted as non-climatic breaks. Finally, all the missing data in all homogeneous series and subseries infilled with the same data estimation procedure using only the reference of their own other fragments.
The maximum, minimum temperaturs and precipitation series for 134 weather stations of Iran have an average 3%, 4% and 2% missing values, respectively. In this time series, 63 outliers were detected for the maximum temperature parameter that 53 of them were related to the Geophysics station of the University of Tehran. For the minimum temperature, this number reached 50 that 11 of them belong to the Geophysics station and for the precipitation parameter 13 outliers were identified that 5 of them are related to the Geophysics station. For the daily temperature series (excluding Geophysics station), 89 stations were homogeneous and 44 stations had one or two break points, and for the precipitation series, 15 stations were identified as in-homogeneous.

کلیدواژه‌ها [English]

  • Homogenization
  • Climatol algorithm
  • Metadata
  • Outliers
  • Missing data
جوانشیری، ز.، محمدیان، آ.، پاکدامن، م.، فلامرزی، ی.، و کوهی، م. 1399. کنترل کیفیت و همگن‌سازی داده‌های روزانه پارامترهای دما و بارش ایستگاه‌های هواشناسی کل کشور. طرح پژوهشی، کارفرما: سازمان هواشناسی کشور.
دین­پژوه، ی.، فاخری، ا.، مقدم، م.، میرنیا، م.، و جهانبخش اصل، س. 1382. پهنه­بندی اقلیمی ایران با استفاده از تحلیل­های چند متغیره برای استفاده در مطالعات کشاورزی. م. دانش کشاورزی، 13، 1، 90-71.
علیجانی، ب.، 1385، آب و هوای ایران، انتشارات سمت، تهران- ایران.
علیجانی، ب.، 1390، اقلیم­شناسی سینوپتیک، انتشارات سمت، تهران- ایران.
مسعودیان، س. ا.، 1382، نواحی اقلیمی ایران. م. جغرافیا و توسعه. 1، 2، 184-171.
Alexanderson, H., Mobeg, A., 1997, Homogenization of Swedish temprature data partI: Homogeneity test for linear trends. Int. J. Climatol, 17, 25-34.
Badripour. H., 1992, Islamic Republic of Iran (FAO, Report on the round table on pastoralism. FAO Technical Cooperation Programme, Project TCP/IRA/2255, Rome. FAOSTAT. 2004 (http://www.fao.org/waicent/portal/statistics_en.asp).
Guijarro, J. A., 2018, Homogenization of climatic series with Climatol, https://CRAN.R project.org/package=climatol.
https://data.irimo.ir/
https://www.ogimet.com/synops.phtml.en
http://www.meteomanz.com/index?l=1
Paulhus, J. L. H., Kohler, M. A., 1952, Interpolation of missing precipitation records. Monthly Weather Review. 80(8), 129-133.
Rahimzadeh, F. and Nassaji Zavareh, M. 2013, Effects of adjustment for non-climatic discontinuities on determination of temperature trends and variability over Iran. Int. J. Climatol. 2014. 34: 2079–2096 .
Tavakoli, M. and Mohamadian, A. H., 2011, GIS based considerations for development in different Iranian climatic regions. J. American. Science. 7(4). 182–187.
World Meteorological Organization, 2017, WMO Guidelines on the Calculation of Climate Normals. WMO-No.1203.
World Meteorological Organization, 2003, Guidelines on Climate Metadata and Homogenization. WMO/TD No. 1186.