مقایسه روش‌های متفاوت انتگرال‌گیری در تعیین مدار ماهواره‌های نزدیک سطح زمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کالج سلطنتی سوئد، صندوق پستی SE 100-44، استکهلم، سوئد و دانشگاه آزاد اسلامی واحد شهرری، صندوق پستی 334- 18735

2 دانشگاه صنعتی خواجه نصیر لدین طوسی، صندوق پستی 4416- 15875

چکیده

موضوع اصلی این مقاله، مقایسه چند روش عددی حل معادله دیفرانسیل حرکت ماهواره است. با توجه به این‌که معادله مسیر حرکت
ماهواره معادله دیفرانسیل مرتبه دوم است، برای حل عددی مسیر بایستی شش مقدار اولیه به معادله دیفرانسیل معرفی کرد که این شش مقدار اولیه به ترتیب مؤلفه‌های بردار موقعیت و سرعت ماهواره در یک دستگاه لَختی است. با مقایسه بردار موقعیت و سرعت به‌دست آمده از حل عددی مدار و مدار کپلری می‌توان خطای روش عددی حل مدار را در یک دستگاه مختصات ماهواره- مرکز نمایش داد. در این تحقیق، سه روش عددی حل مدار از قبیل رونگ-کوتا، روش رونگ-کوتا- نیسترم و روش پیشگو- اصلاحگر (آدامز- بشفورت و آدامز- مولتون (برای حل عددی مدار یک ماهواره نزدیک سطح زمین مورد بررسی قرار می‌گیرد. محاسبات نشان می‌دهد با گام محاسباتی 30 ثانیه به ترتیب روش رونگ-کوتا مرتبه 4، روش پیشگو- اصلاحگر آدامز- بشفورت و آدامز- مولتون مرتبه 4 و روش رونگ-کوتا نیسترم مرتبه 3 مناسب‌ترین‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of numerical integration methods in orbit determination of low earth orbiting satellites■

نویسندگان [English]

  • Mehdi Eshagh 1
  • Mehdi Najafi Alamdari 2
1 Royal Institute of Technology (KTH), SE 100 44 Stockholm, Sweden and Islamic Azad University, Shahr-e-Rey branch, P.O. Box 18735-334, Tehran, Iran
2 K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
چکیده [English]

Comparison of some numerical integration methods of solving the differential equation of motion of a satellite is the main subject of this paper. Since the equation of motion of a satellite is a second order differential equation, therefore, six initial values should be introduced to the numerical solution. These six initial values are the components of position and velocity vectors in an inertial frame respectively. Comparing numerically integrated position and velocity vectors with Keplerian orbit; one can obtain the bias of the numerical integration method in a satellite-centered coordinate system. In this research, three methods of Runge-Kutta, Runge-Kutta-Nystrom, and the predictor-corrector method of Adams-Bashforth and Adams-Moulton are investigated for a low earth orbiting satellite. Numerical results show that with integration size of 30 seconds, the Runge-Kutta method, Adams-Bashforth and Adams-Moulton predictor-corrector algorithms, and Runge-Kutta-Nustrom provide closer orbit to the theoretical orbit respectively.

کلیدواژه‌ها [English]

  • Numerical solution
  • Predictor-corrector
  • Perturbations
  • Differential equations
  • Error
Babolian, E., and Malek Nejad, K., 1995, Numerical computations, University of Elm va San’at publication, Tehran, Iran.
Buffet, A., 1985, Short arc orbit improvement of GPS satellite, Msc Thesis, University of Calgary, Department of Geodesy and Geomatics Engineering, Calgary, Canada.
Eshagh, M., 2003, Consideration of behavior of orbital elements with respect to different degree and order of geopotential models, submitted to Journal of Earth and Space Physics, Geophysics Institute of Tehran University, Tehran, Iran.
Eshagh, M., 2005, Step variable numerical orbit integration of a low earth orbiting satellite, Journal of Earth and Space Physics, Geophysics Institute of Tehran University, Tehran, Iran, Vol: 31, 1-12.
Eshagh, M., and Najafi, Alamdari, M., 2003, Precise orbit determination of a low earth orbiting satellite, Msc thesis, K.N.Toosi University of Technology, Tehran, Iran.
Eshagh. M., and Najafi, Alamdari, M., 2005a, Investigation of orbital perturbations of a low earth orbiting (LEO) satellite, paper to be presented in NATM June 27-29, Institute of Navigation ION 61 st. Cambridge, Massachusetts, United States of America.
Eshagh, M., and Najafi, Alamdari, M., 2005b, Numerical orbit integration of a low earth orbiting satellite, paper to be presented in European navigation conference, GNSS 2005, German Institute of Navigation, Munchen, Germany.
Eshagh M., and Najafi Alamdari, M., 2005c, Numerical integration and orbital perturbation of CHAMP satellite’s orbit, paper to be presented in GNSS 2005, January, Institute of navigation, California, San Diego, United States of America.
Kuang, D., Bar-Server, Y., Bertiger, W., Desai, S., Haines, B., Iijima, B., Kruizinga, G., Meehan, Th., and Romans, L., 2001, Precise orbit determination for CHAMP using GPS data from BlackJack Reciever, in 2001 ION National Technical Meeting Proceedings, Session E1:Scientific Apllication, Timing, and Frequency, Long Beach, California, January, 2001.
McCarthy, D., 1996, “IERS Technical Note 21” US Naval observatory, central bureau of IERS-Observatoire.
Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bod, A., Lemoine, J. M., Köng, S. Loyer, H. Neumayer, J.C. Marty, F. Barthelmes, R., Perosant, F., Zhu, S. Y., 2002, A high-quality gravity field model from CHAMP GPS tarcking data and accelemetry (EIGEN-1S), Geophys. Res. Lett. Vol. 29, NO. 14.
Rim, H. J., and Schutz. B. E., 2001, Precision orbit determination (POD), Geoscience laser and altimeter satellite system, university of Texas, United States of America.
Santos, M. C., 1994, On real time orbit improvement for GPS satellites, PhD thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada.
Seeber, G., 2003, Satellite Geodesy, 2nd completely revised and extended edition, Walter de Gruyter. Berlin. New York.
Shidfar, A., 1994, Differential equations, University of Elm va San’at publication, Tehran, Iran.
Su. H., 2000, Orbit determination of IGSO, GEO and MEO satellites, Ph.D thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany.
Touboul, B. D., Willemenot, E., Foulon, B., and Josselin, V., 1999, Acceleometers for CHAMP, GRACE and GOCE space missions: Synergy and evolution, Boll. Geof. Teor. Appl., 40, 321-327.
Vanicek, P., and Krakiwsky, E., 1987, Geodesy the Concepts, North-holand punbishing company. Netherland.
Wolf, R., 2000, Satellite orbit and ephemeris determination using inter satellite links, Ph.D thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany.