Estimation of layered earth conductivity with electromagnetic induction data in the low induction number range using the genetic algorithm method

Document Type : Research Article

Authors

1 Department of Geophysics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

2 Department of Electrical Engineering, Faculty of Engineering, Bu-Ali-Sina University, Hamedan, Iran.

Abstract

Estimating the electromagnetic parameters of the subsurface is crucial for the non-invasive characterization of soil properties such as clay content, water content, contaminants and aquifers. It is also of significant importance in agriculture for managing water resources. In this context, several geophysical methods, including electromagnetic (EM) techniques, have been developed to measure parameters such as the conductivity of subsurface layers. In this study, the conductivity of horizontal subsurface layers within the exploration depth of the EM-38 device was estimated using electromagnetic data in the low induction number (LIN) range. The data were acquired using the EM-38 device, depending on the horizontal and vertical orientation of the transmitter and receiver dipoles, and were received at the receiver coil. Additionally, the combined data obtained from both horizontal and vertical modes could be used as combined-mode data. To perform the inversion process, synthetic data for three modes (horizontal, vertical, and combined) were first generated. Subsequently, the electrical conductivity of the horizontal layers in the model was estimated using linear inversion for each of these three datasets in the low induction number range. Ordinary least squares, Tikhonov regularization (of zeroth, first, and second orders), and genetic algorithms (GA) were employed to estimate the parameters. The results demonstrated that, for this problem, Tikhonov regularization of zeroth, first, and second orders does not significantly improve the solution, and the model obtained using these techniques deviates considerably from the true model. Genetic algorithms, which are intelligent optimization techniques, have been applied to solve nonlinear inverse problems in various fields of geophysics. Genetic algorithms (GA), inspired by the concept of evolution, represent a class of search and optimization methods. These algorithms encode potential solutions to a specific problem in chromosome-like data structures.
By applying recombination operators to these chromosomal data structures, genetic algorithms preserve the critical information stored within these structures. The inversion results showed that, for the employed model, genetic algorithms and the ordinary least squares method with combined-mode data provided the conductivity of the layers with errors of less than 4% and 5%, respectively. In the inversion using both the ordinary least squares method and genetic algorithms, the parameters estimated using combined-mode data exhibited the lowest root mean square error (RMSE) compared to the other two modes, while the horizontal mode had the highest error. Therefore, for this problem, the genetic algorithm was identified as a more robust and accurate method compared to ordinary least squares, and the combined-mode data proved to be more suitable than the other two modes. The data resolution matrix and the model resolution matrix were both identity matrices, indicating the uniqueness of the data and the model parameters. Moreover, the model covariance matrix revealed that noise in the data was strongly mapped, particularly onto the second parameter of the model.

Keywords

Main Subjects


بابایی، م. و مسیبیان، س. ا. (1401). تفسیر داده­های القای الکترومغناطیسی با روش بهینهسازی ازدحام ذرات برای تعیین پارامترهای کره رسانا به‌عنوان مدلی از مهمات منفجر نشده. مجله ژئوفیزیک ایران. 16 (2)، 231-240.
بابایی، م. و حسینی پیلانگرگی، س. م. (1403).تخمین پارامترهای هندسی مهمات منفجر نشده به روش القای الکترومغناطیس با استفاده از الگوریتم ژنتیک. مجله ژئوفیزیک ایران. 18 (5)، 67-82.
پرنو، س.؛ اسکویی، ب. و جیووانی، ف. (1399). برآورد عمق و مکان بی­هنجاری­های حاصل از داده­های الکترومغناطیس زمینی حوزه فرکانس با استفاده از روش تصویر برداری عمق از نقاط بینهایت. نشریه پژوهش­های ژئوفیزیک کاربردی، 7(1)، 243-252.
رحیمیان، م.ح. و هاشمی­نژاد، ی. (1389). واسنجی دستگاه القاگر الکترومغناطیس (EM-38) برای ارزیابی شوری خاک. مجله پژوهش­های خاک (علوم خاک و آب)، 24(3)، 42-33.
زهرایی، ب.؛ حسینی، س. م. (1393). الگوریتم ژنتیک و بهینه­سازی مهندسی. چاپ دوم. تهران. انتشارات گوتنبرگ.
Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems: Elsevier.
Beamish, D., 2011. Low induction number, ground conductivity meters: a correction procedure in the absence of magnetic effects. J. Appl. Geophys., 75, 244–253.
Belmonte-Jiménez, S. I., Bortolotti-Villalobos, A., Campos-Enríquez, J. Ó., Pérez-Flores, M. A., Delgado-Rodríguez, O., & Ladrón de Guevara-Torres, M. de la Á. (2014). Electromagnetic methods application for characterizing a site contaminated by leachates. Revista Internacional de Contaminación Ambiental, 30(3), 317–329.
Borchers, B., Uram, T., & Hendrickx, J. M. (1997). Tikhonov regularization of electrical conductivity depth profiles in field soils. Soil Science Society of America Journal, 61(4), 1004-1009.
Cella, F., Paoletti, V., Florio, G., & Fedi, M. (2015). Characterizing elements of urban planning in Magna Graecia using geophysical techniques: the case of Tirena (Southern Italy). Archaeological Prospection, 22(3), 207-219.
Christiansen, A. V., Pedersen, J. B., Auken, E., Søe, N. E., Holst, M. K., & Kristiansen, S. M. (2016). Improved geoarchaeological mapping with electromagnetic induction instruments from dedicated processing and inversion. Remote Sensing, 8(12), 1022.
Da Conceição Batista, J., & Sampaio, E. E. S. (2019). Magnetotelluric inversion of one-and two-dimensional synthetic data based on hybrid genetic algorithms. Acta Geophysica, 67, 1365-1377.
Deidda, G. P., Bonomi, E., & Manzi, C. (2003). Inversion of electrical conductivity data with Tikhonov regularization approach: some considerations. Annals of Geophysics, 46(3), 549-558.
Dos Santos, V. R. N., & Porsani, J. L. (2011). Comparing performance of instrumental drift correction by linear and quadratic adjusting in inductive electromagnetic data. Journal of Applied Geophysics, 73(1), 1-7.
Dumont, G., Robert, T., Marck, N., & Nguyen, F. (2017). Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. Journal of Applied Geophysics, 145, 74-83.
El-Qady, G., Metwaly, M., & Khozaym, A. (2014). Tracing buried pipelines using multi frequency electromagnetic. NRIAG Journal of Astronomy and Geophysics, 3(1), 101-107.
Kaufman, A. & Keller, G. (1983). Frequency and Transient Soundings: Elsevier.
Heil, K., & Schmidhalter, U. (2015). Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale. Computers and Electronics in Agriculture, 110, 267-280.
Luo, W., Ge, J., Liu, H., Wu, S., Wang, H., Yuan, Z., Luan, X., Dong, H., & Fukushima, E. F. (2023). A fast tracking method for magnetic abnormalities using distributed Overhauser magnetometer system based on genetic algorithm. Review of Scientific Instruments, 94(6), 064501.
McNeill, J. 1980, Electromagnetic terrain conductivity measurement at low induction numbers, Technical Note TN-6, Geonics Ltd.
Parnow, S., Oskooi, B., & Florio, G. (2021). Improved linear inversion of low induction number electromagnetic data. Geophysical Journal International, 224(3), 1505-1522.
Pérez-Flores, M. A., Antonio-Carpio, R. G., Gómez-Treviño, E., Ferguson, I., & Méndez-Delgado, S. (2012). Imaging of 3D electromagnetic data at low-induction numbers. Geophysics, 77(4), WB47-WB57.
Ratshiedana, P. E., Abd Elbasit, M. A., Adam, E., Chirima, J. G., Liu, G., & Economon, E. B. (2023). Determination of soil electrical conductivity and moisture on different soil layers using electromagnetic techniques in irrigated arid environments in South Africa. Water, 15(10), 1911.
Saey, T., De Smedt, P., Delefortrie, S., Van De Vijver, E., & Van Meirvenne, M. (2015). Comparing one-and two-dimensional EMI conductivity inverse modeling procedures for characterizing a two-layered soil. Geoderma, 241, 12-23.
Saey, T., Simpson, D., Vermeersch, H., Cockx, L., & Van Meirvenne, M. (2009). Comparing the EM38DD and DUALEM‐21S sensors for depth‐to‐clay mapping. Soil Science Society of America Journal, 73(1), 7-12.
Schultz, G. & Ruppel, C. (2005). Inversion of inductive electromagnetic data in highly conductive terrains. Geophysics, 70(1), G16-G28.
Song, Y., & Kim, J.-H. (2008). An efficient 2.5 D inversion of loop-loop electromagnetic data. Exploration geophysics, 39(1), 68-77.
Stanley, J. N., Lamb, D. W., Falzon, G., & Schneider, D. A. (2014). Apparent electrical conductivity (ECa) as a surrogate for neutron probe counts to measure soil moisture content in heavy clay soils (Vertosols). Soil research, 52(4), 373-378.
Thiesson, J., Tabbagh, A., Dabas, M., & Chevalier, A. (2017). Characterization of buried cables and pipes using electromagnetic induction loop-loop frequency-domain devices. Geophysics, 83(1), E1-E10.
Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. VH Winston & Sons. In: Washington, DC: John Wiley & Sons, New York.
Wait, J. (2012). Geo-electromagnetism: Elsevier.
Ward, S.H. & Hohmann, G.W., 1988. Electromagnetic theory for geophysical applications. in Electromagnetic Methods in Applied Geophysics: Voume 1, Theory, 130–311, Society of Exploration Geophysicists.
Watson, H. D., Neely, H. L., Morgan, C. L., McInnes, K. J., & Molling, C. C. (2017). Identifying subsoil variation associated with gilgai using electromagnetic induction. Geoderma, 295, 34-40.