Application of Remote Sensing and Machine Learning for the Identification of Dust Sources in Khuzestan Province

Document Type : Research Article

Authors

1 Forecasting, and Crisis Management of Atmospheric Hazards, Khuzestan Province Meteorological Department, Ahvaz, Iran.

2 Khuzestan Province Meteorological Department, Ahvaz, Iran.

Abstract

Khuzestan Province, due to its arid climate and unique geographical location, is one of the main regions affected by dust storms in Iran. This study utilized satellite data and the Random Forest machine learning algorithm to identify dust source areas in the province during the period from January 26 to April 26, 2025. Sentinel-2, Sentinel-5P, and SMAP satellite data were used to calculate the Normalized Difference Vegetation Index (NDVI), Absorbing Aerosol Index (AAI), and surface soil moisture respectively. These indices monitored vegetation cover, the presence of dust-related aerosols, and soil dryness.
Google Earth Engine (GEE) was employed for data processing. The steps included defining the study area (Khuzestan, with a surface area of 64,057 km², based on FAO/GAUL/2015 data), filtering satellite images with cloud cover less than 10%, calculating the average values of NDVI, AAI, and soil moisture, and integrating these layers into a composite image. A Random Forest classifier with 50 decision trees was used to categorize regions into source and non-source classes. Sample points included 200 source points (e.g., Hoor-Al-Azim wetland) and 200 non-source points (urban and agricultural areas). Of these points, 70% were used for model training, 15% for validation, and 15% for final testing and evaluation. NDVI, Soil Moisture and AAI time series were also analyzed to assess aerosol variation trends, and model accuracy was evaluated using a confusion matrix. The results obtained from the validation data (overall accuracy = 0.95, F1-score = 0.95, Cohen’s Kappa = 0.90) and the final test (overall accuracy = 0.967, F1-score = 0.967, Cohen’s Kappa = 0.933) indicate a very strong and stable performance of the mode. The results indicated that the southern and western parts of Khuzestan—especially areas around Hoor-Al-Azim, southeastern Ahvaz, and the regions of Mahshahr, Hendijan, Omidiyeh, Susangerd, and Hoveyzeh are major dust sources. The classification map (Figure 8) highlighted these areas in red and non-source areas in green. The NDVI map (Figure 2) showed low vegetation coverage (values less than 0) in the southwest, particularly near Hoor-Al-Azim, indicating dry, bare-soil conditions. The AAI index (Figure 3) confirmed high aerosol values (0.2 to 0.5) in the central and southern regions, especially around Ahvaz and Hoor-Al-Azim. Soil moisture values (Figure 4) were also low in the south and central areas (below 0.1 cm³/cm³), indicating high potential for wind erosion. Key contributing factors to dust source activation included drought, reduced rainfall, the drying of the Jarrahi and Karun rivers, and desiccation of the southern parts of Hoor-Al-Azim.
This study successfully identified dust source areas in Khuzestan and is consistent with previous research, such as that by Rangzan et al. (1393) The inclusion of soil moisture as a new variable improved identification accuracy. The Random Forest algorithm provided reliable performance, due to its ability to model nonlinear relationships and handle heterogeneous data. However, limitations included the lack of field data for validation and the influence of atmospheric conditions on satellite observations.
Future studies are encouraged to incorporate field observations for validation and increase the number of sample points. Moreover, more advanced methods such as deep learning and the integration of satellite data with meteorological models (e.g., wind speed and direction), could improve dust storm forecasting accuracy. This approach especially with the flexible coding environment of Google Earth Engine offers an effective tool for monitoring and managing dust sources and can be applied in wetland restoration and soil stabilization efforts in desert regions.

Keywords

Main Subjects


بحرینی، ف.؛ پناهی، ف.؛ جعفری، م. و ملکیان، آ. (1397). شناسایی مناطق آسیب‌پذیر پوشش‌گیاهی به خشکسالی با استفاده از سنجش از دور (مطالعه موردی: استان بوشهر). مجله منابع طبیعی ایران (مدیریت مرتع و آبخیزداری)، ۷1 (2)، 341-354.
بروغنی، م.؛ میرچولی، ف. و محمدی، م. (1401). پهنه‌بندی آسیب‌پذیری گرد و غبار با استفاده از تصاویر ماهواره‌ای و مدل‌های یادگیری ماشین. مطالعات جغرافیایی مناطق خشک، 13(47)، 1-13.
رایگانی، ب.؛ براتی قهفرخی، س. خوشنوا، ا. (1398). شناسایی کانون‌های تولید گرد و غبار به کمک داده‌های دورسنجی: یک رویکرد جامع. مرتع و آبخیزداری (منابع طبیعی ایران)، 72(1)، 83–105.
رنگزن، ک.؛ زراسوندی، ع. ر.؛ عبدالخانی، ع. و مجردی، ب. (1393). مدلسازی آلودگی هوا با استفاده از تصاویر سنجنده مودیس: مطالعه موردی توده‌های گرد و غبار استان خوزستان. زمین‌شناسی کاربردی پیشرفته، 4(4)، 38–45.
رشیدی، م. ج.؛ فلاح، ا. و شتایی جویباری، ش. (1402). ارزیابی و مقایسه کرنل‌های الگوریتم ماشین بردار پشتیبان برای تشخیص گونه‌های کنار و گون با بهره‌گیری از تصاویر رقومی هوایی UltraCam-D (مطالعه موردی سازند میشان منطقه تنگ ارم استان بوشهر). در بیست و ششمین همایش انجمن زمین‌شناسی ایران، ارومیه.
زنگنه، ا. (1398). پیش‌بینی مکانی-زمانی داده‌های سنجش از دور با استفاده از یادگیری عمیق. پایان‌نامه کارشناسی ارشد. به راهنمایی هدی مشایخی و سعیده فردوسی. شاهرود: دانشگاه صنعتی شاهرود.
نظری سامانی، ع. ‌ا.؛ زهتابیان، غ. و علم‌بیگی، ا. (1399). تعیین چارچوب مفهومی ریسک گرد و غبار بر مبنای سنجش تاب‌آوری (بررسی موردی: جنوب‌غرب کشور). پژوهش‌های راهبردی در علوم کشاورزی و منابع طبیعی،5(1)، 33–44.
Ahmady‑Birgani, H. (2025). Conceptualizing dust emission areas and hotspots over the Aeolian landforms via remote‑sensing aerosol algorithms: case study, Lake Urmia, a major hypersaline lake in the Middle East. Geoscience Letters, 12, Article 28.
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data (Research Report). University of California, Berkeley.
Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.
Gandham, H., Dasari, H. P., Saharwardi, M. S., Karumuri, A., & Hoteit, I. (2023). Dust sources over the Arabian Peninsula. Environmental Research Letters, 18(9), Article 094053.
Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques (3rd ed.). Elsevier.
Jafari, R., Amiri, M., Asgari, F., & Tarkesh, M. (2022). Dust source susceptibility mapping based on remote sensing and machine learning techniques. Ecological Informatics, 72, 101872.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.