Modeling instantaneous water level changes of Caspian Sea using satellite altimetry observations


1 Associate Professor, Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Iran

2 M.Sc. student of Geodesy (Hydrography) , Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran

3 M.Sc., Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Iran


Sea level changes are of particular significance because of their influence on the industries such as fishery, shipping, marine transport, harbor design, and power constructions in marine and coastal regions. Considering the possible irreparable environmental and economic damages, studying the sea level changes with time is necessary.
Several methods, including experimental methods and numerical models, have been developed to predict the sea wave behavior. Time series analysis is one of the approaches for detecting sea level variations and short-term and long-term prediction. For this purpose, different methods have been proposed including ARMA, MA and AR time series models.
With the advent of satellite altimetry in 1973, it was made possible to monitor the sea level with high accuracy (Anzenhofer et al. 1999). Altimetry satellites collect height information from different points on the Earth along the determined orbits. The main mission of these satellites is to measure the sea level at different times and locations.
In this study, data from the altimetry satellite Jason-2 from 2008 to 2012 is analyzed using different time series processes.
The time series for the instantaneous water level is influenced by seasonal, periodical and stochastic variations due to environmental factors.
Fourier analysis is a convenient and efficient mathematical tool for modeling the behavior of a periodic phenomenon.
Having the water level and the measurement time, a time series of the variations is derived. The water level model is considered as a linear combination of trigonometric functions as below:
The above equation is called the Fourier series for the sequence  in which  and  are the Fourier coefficients. If  and  are determined for each given frequency, the numerical value of the periodic phenomena can be computed at each  epoch.
Frequency estimation is one of the most important steps in modeling. For this purpose Fourier spectral analysis method was used to find the time series’ frequency, and least square method relying on the concept of time series stationary to achieve more accurate frequency. The results show that after removal of main frequencies of two steps with a period greater than 19 days and greater than 4 hours, data were completely stationary and were prepared for the modeling using time series.
The main purpose of this study is to choose the best model for the prediction of the sea level in the region under study based on the prediction error criteria. The trend for water level variations from 2008 to 2012, the improvement in relative accuracy of estimation, and the water level prediction in the long-term interval are also investigated.
To investigate the performance of the different models in estimation of the time series values in the long-term interval, absolute mean error, root mean square error, Akaike information criterion (AIC), Bayesian information criterion (BIC) and Schwarz Bayesian criterion (SBC) are used. The results show that the AR(6) time series model is more efficient than MA(q) and ARMA(p,q) models, predicting the variations with lower errors. The statistical analysis of the instantaneous water level shows that the absolute mean error is 3.8 mm, and the root mean square error is 1.43 cm/day.


Main Subjects

جعفری، ع.، 1385، بررسی روند تغییرات سطح آب دریای خزر با استفاده از مشاهدات ارتفاع‌سنجی ماهواره‌ای و تایدگیج‌های ساحلی، رساله کارشناسی ارشد، دانشکده فنی دانشگاه تهران.
رجبی، س.، چگینی، و.، لاری، ک.، کامران زاد، ب.، طالب حسینی.، 1392، مدل‌سازی عددی امواج ناشی از باد در منطقه انزلی با استفاده از مدل عددی SWAN،  نشریه علمی-پژوهشی اقیانوس‌شناسی.
ریاضی، ر.، ۱۳۷۸، پیش‌بینی امواج در آب‌های کم عمق ساحل خزر، پایان نامه کارشناسی ارشد فیزیک دریا، دانشگاه تربیت مدرس.
زمانی، ا.، عظیمیان، ا.، 1383، پیش‌بینی ارتفاع امواج دریای خزر با استفاده از شبکه مصنوعی عصبی، دانشگاه صنعتی اصفهان،  نهمین کنفرانس دینامیک شاره‌ها.
شجاعی کیاده، ح.، 1383، ادغام اطلاعات سنجنده‌های ماهواره‌ای مختلف و اطلاعات ژئوفیزیکی به‌منظور دستیابی به سطح لحظه‎ای آب دریا، رساله کارشناسی ارشد، دانشکده فنی دانشگاه تهران.
فلاح، ع، ع.، کرمی خانیکی، ع.، آزرمسا، س. ع.، ١٣٨٣، ارزیابی مدل‌های ریاضی WAM و MIKE ٢١ در شبیه‌سازی امواج دریای خزر، مجله آبخیز، شماره 3 (دی)، ص ۳۰‐۲۴.
طوریان، م، 1385، مدل‌سازی جزرومد دریای عمان و خلیج فارس با استفاده از مشاهدات ارتفاع‌سنجی ماهواره‌ای و مشاهدات تایدگیج‌های ساحلی، رساله کارشناسی ارشد، دانشکده فنی دانشگاه تهران.
محجوبی، ج.، اردلان صمغی، ح.، 1388، پیش‌بینی پارامترهای امواج ناشی از باد در دریای خزر با استفاده از روش درختان تصمیم رگرسیونی و شبکه‌های عصبی مصنوعی، نشریه مهندسی دریا، سال پنجم، شماره 9.
نیرومند، ح.، 1371، تجزیه و تحلیل سری‌های زمانی، تألیف: جاناتان دی کرایر، مشهد؛ دانشگاه فردوسی مشهد.
نیرومند، ح.، بزرگ نیا،  ا.،1381 ، مقدمه‌ای بر تحلیل سری‌های زمانی، انتشارات دانشگاه فردوسی مشهد.
Akaike,H.,1973, Information theory and an extension of the maximum likelihood principle, proc.,2nd International Symposium on Information Theory,(Eds. B. N. petrov and F. Csaki),267-281, Akademiai kiado, Budapest.
Akaike, H., 1974a, A new look at the statistical model identification, IEEE Transactions on Automatic Control, AC-19, 716-723.
Akaike, H., 1978, A Bayesian analysis of the minimum AIC procedure, Ann.Inst. Statist. Math., 30 A, 9-14.
Akaike, H., 1979, A Bayesian analysis of the minimum AIC procedure of autoregressive model fitting, Biometrika, 66, 237-242.
Anzenhofer, M., Shum, C. K., and Rentsh, M., (1999), Coastal altimetry and applications,Department of Civil and Environmental Engineering and Geodetic Science of the Ohio StateUniversity, Columbus Ohio, Report No. 464.
Barbosa, S, M., Silva, M, E., Fernandes, M, J., 2006, Multivariate Autoregressive Modeling of Sea Level Time Series from TOPEX/Poseidon Satellite Altimetry, Nonlin, Processes Geophysics, 13, 177- 184.
Cheng, X., Qi, Y., 2007, Trends of sea level variations in the South China Sea from merged altimetry data, Global and Planetary Change., 57, 371–382.
Lebedev, S.A., Kostianoy, A.G., 2005, Satellite Altimetry of the Caspian Sea, Moscow: Sea, 366 pp., (in Russian).
Marcos, M.., Woppelmann, G., Bosch, W., Savcenko, R., 2007, Decadal sea level trends in the Bay of Biscay from tide gauges, GPS and TOPEX, Journal of Marine, Systems, MARSYS-01435.
Schwartz, G., 1978, Estimating the dimension of a model, ann. Statist. 6, 461-464.
Shibata, R., 1976, Selection of the order of an autoregressive model by Akaike’s information criterion, Biometrika, 63, 117-126.