Seismic activity zoning of Zagros fold and thrust belt using fractal parameters


1 M.Sc., Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran

2 Assistant Professor, Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran


Earthquakes are a particular concern because of the serious hazard they present. The existence of seismicity patterns such as the foreshock and aftershock clusters, doughnut pattern, seismic quiescence etc show that the earthquake occurrence in the active tectonic regions is not random and clustering phenomena are obvious characteristics of these events in space and time. Fractal analysis, as a statistical tool, has been applied to describe the spatial and temporal distribution of earthquakes (Bhattacharya and Kayal, 2003; Ceylan, 2006). The well-known Gutenberg- Richter (1944) relation also implies a power law relation between the energy release and the frequency of occurrence. It means size distribution of earthquakes is scale invariant and b-value has been suggested as a generalized fractal dimension of earthquake magnitude (Aki, 1981; Turcotte, 1997). Therefore, earthquakes have fractal structure in the distribution of size, space and time. In this paper, the spatial variations of the fractal parameters for the seismicity of Zagros fold and thrust belt, Between 25 to 37 N and 44 to 58 E, have been analyzed. For this aim, we have extracted a homogeneous catalogue with mb ≥ 4.4 from ISC and NEIC bulletins, covering a time period 1975 – 2014. In order to investigate the spatial variations of fractal parameters, the study area is covered by a 0.5◦×0.5◦ grid. Then, fractal parameters consist of the b-value, correlation dimensions of epicenteral (De) and occurrence time of earthquakes (Dt) were estimated for each sample volume, data within a fixed radii (75km) centered on every grid node. ZMAP software was used for calculating the parameters at each node. In this paper, two sets of analyses have been done for total and declustered data sets. In the final stage, the spatial variations of b-value, Deand Dt parameters were drawn as maps. The b-value map of total data set indicates a low value of b in the Zagros-Makran transition zone, probably as a result of the increased applied stress due to an increase in depth of the seismogenic crust and/or an increase of the convergence rate between the Arabia and the Eurasian Plate at this zone. The Kazerun-Borazjan faults as transfer fault zone is characterized with low b –value, too. This map also show low values in the northwest Zagros, where the recent dangerous Murmuri earthquake with Mw 6.2 (NEIC) has been occurred. The interesting result of this research is a high correlation between b-value, De and Dtmaps. Similar to the b-value map, the De- and Dt maps also show anomalous low values in the Zagros-Makran transition zone, Kazerun, Borazjan, Karebas, Sabz-Pushan faults and northwest Zagros, showing strong clustering of events in space and occurrence time.
In order to investigate the background seismicity pattern of the Zagros, same analysis have been done after declustering the catalogue, removing dependent events, using Reasenberg (1985) algorithm. The result of analyses of b-value is almost similar to the previously one, anomalous low values in the Zagros-Makran transition zone, Kazerun, Borazjan, Karebas, Sabz-Pushan faults and northwest Zagros. Since the epicentral and occurrence time distributions of earthquakes are sensitive to clustering of events, the declustering process, as expected, alters the results for two other parameters. The spatial variations map of Dt show almost uniform distribution. Despite this, the De- variation map still shows the lower values in the Zagros-Makran transition zone, Kazerun, Borazjan, Karebas, Sabz-Pushan faults rather than other regions. This suggests that the mainshocks occur in the clusters along these main structural trends. Hence the occurrence of smaller earthquakes, coupled with a homogeneous distribution of earthquake epicentres at the more extensive region of Zagros, show that stress released along dispersed and smaller faults. But in the Zagros- Makran transition and Kazerun-Borazjan zones, an increased clustering of epicenter distributions (decreased De), are associated with an increase in stress concentration on the main structural trends (such as Oman line and Qatar-Kazerun line). Temporal distributions of earthquakes in these zones are indicated a high clustering degree. This may be due to the occurrence of frequent larger earthquakes with aftershock sequences in this zone.
Generally, Spatial mapping of the fractal parameters found valuable information about the scale invariance property of the seismic activity variations in the region. These results suggest that the fractal approach can be used as a useful tool for assessing seismic energy distribution on seismotectonically active regions.


Main Subjects

آق اتابای، م.، 1393، الگوی توزیع زمانی زمین‌لرزه‌های جنوب خاور زاگرس، مجله علوم زمین، 94، صفحه 245- 254.
بیت‌اللهی، ع.  و معتمد، پ.، 1389، محاسبه پارامترهای لرزه‌خیزی برای منطقه البرز مرکزی، پژوهشنامه زلزله‌شناسی و مهندسی زلزله، شماره 3 و 4، 8 صفحه.
حسامی آذر، خ.، جمالی، ف. و طبسی، ه.، 1382، نقشه گسلهای فعال ایران، مقیاس: 1:25000000، گروه لرزه‌زمین‌ساخت، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران.
کلانه، س. و آق اتابای، م.، 1393، بررسی الگوی تغییرات مکانی لرزه‌خیزی در کمربند چین‌خورده- رانده زاگرس، شانزدهمین کنفرانس ژئوفیزیک ایران، صفحه 1-4.
متقی، س.خ.، حسامی آذر، خ. و مصطفی‌زاده، م.، 1391، تشخیص تنشگاه‌های بزرگ در البرز با استفاده از لرزه‌خیزی دهه گذشته و معرفی محتمل‌ترین مکان‌های رویداد زمین‌لرزه‌های بزرگ آینده، مجله علوم زمین، 85، 125-134.
مطیعی، ه.، 1374، زمین‌شناسی نفت زاگرس، تهران، سازمان زمین‌شناسی ایران، جلد 1، 589 صفحه.
موسوی بفروئی، س.ح.، میرزائی، ن.، شعبانی، ا. و اسکندری قادی، م.، 1393، پهنه‌بندی خطر زمین‌لرزه در ایران و برآورد مقادیر بیشینه شتاب برای مراکز استان‌ها، مجلة فیزیک زمین و فضا، دوره 40، شماره 4، 15-38.
هاشمی، س.ن، 1388، بررسی تغییرات مکانی پارمتر لرزه‌خیزی b در ایران، مجله علوم زمین، 72، 179- 184.
Aki, K., 1965, Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits, Bull. Earth Res. Inst., Univ. Tokyo, 43, 237-239.
Aki, K., 1981, A probabilistic synthesis of precursory phenomena, in Earthquake Prediction: An International Review, eds. Simpson, D.W. & Richards P. G., AGU, Washington DC, 4, 566–574.
Ashtari Jafari, M., 2013, Spatial distribution of seismicity parameters in the Persian Plateau, Earth Planets Space, 65, 863–869.
Barnhart, W. D. and Lohman, R. B., 2013, Phantom earthquakes and triggered aseismic creep: Vertical partitioning of strain during earthquake sequences in Iran, Geophysical Research Letters, 40, 819–823.
Barnhart, W. D., Lohman, R. B. and Mellors, R. J., 2013, Active accommodation of plate convergence in Southern Iran: Earthquake locations, triggered aseismic slip, and regional strain rates, Journal of Geophysical Research: Solid Earth, 118, 5699–5711.
Berberian, M., 1995, Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics, 241, 193–224.
Bhattacharya, P.M. and Kayal, J.R., 2003, Mapping the b-Value and its Correlation with the Fractal Dimension in the Northeast Region of India, Journal geological society of India, 62, 680-695.
Bridges, D. L. and Gao, S. S., 2006, Spatial variation of seismic b-values beneath Makushin Volcano, Unalaska Island, Alaska, Earth and Planetary Science Letters, 245, 408–415.
Casciello, E., Verges, J., Saura, E., Casini, G., Ferna Ndez, N., Blanc, E., Homke, S. and Hunt, D. W., 2009, Fold patterns and multilayer rheology of the Lurestan Province, Zagros Simply Folded Belt (Iran), Journal of the Geological Society, London, 166, 947–959.
Ceylan, S., 2006, Fractal properties of earthquakes in Marmara, Journal of Istanbul Kültür University, 4, 99-108.
Chen, Ch-Ch., Wang, W-Ch., Chang, Y-F., Wu, Y-M. and Lee, Y-H., 2006, A correlation between the b-value and the fractal dimension from the aftershock sequence of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. J. Int., 167, 1215–1219.
Dimiri, V.P., 2000, Application of fractals in the earth sciences, A.A. Balkema, Rotterdam, Brookfield.
Egdell, H.S., 1996, Salt tectonism in the Persian Gulf Basin, in Salt Tectonics, 100, 129–151, eds Alsop, G.I., Blundell., D.J. and Davison, I., Geological Society Special Publication, London.
Engdahl, E.R., Jackson, J.A., Myers, S.C., Bergman, E.A. and Priestley, K., 2006, Relocation and assessment of seismicity in the Iran region, Geophys. J. Int., 167, 761–778.
Grassberger, P. and Procaccia, I., 1983, Measuring the strangeness of strange attractors, Physica D, 9, 189-208.
Gutenberg, B. and Richter, C.F., 1944, Frequency of earthquakes in California, Bull. Seism. Soc. Am., 34, 185-188.
Hatzfeld, D. and Molnar, P., 2010, Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Review of Geophysics, 48, 48 p.
Hatzfeld, D., Tatar, M., Priestley, K. and Ghafory-Ashtiany, M, 2003, Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran), Geophys. J. Int., 155, 403–410.
Hessami, K., Koyi, H.A. and Talbot, C.J., 2001, The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt, Journal of Petroleum Geology, 24, 5-28.
Hirata, T., 1989, A correlation between the b-value and the fractal dimension of earthquakes, J. Geophys. Res., 94, 7507–7514.
ISC, 2014, International Seismological Center, Newbury, Berkshire, United Kingdom,
Ishimoto, M., and Iida, K., 1939, Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthq. Res., 17, 443-478.
Kumar Pal, P., 2008, Geomorphological, Fractal Dimension and b–value mapping in Northeast India, J. Ind. Geophys. Union, 1, 41-54.
Lacombe, O., Mouthereau, F., Kargar, S. and Meyer, B., 2006, Late Cenozoic and modern stress fields in the western Fars (Iran): Implications for the tectonic and kinematic evolution of central Zagros, Tectonics, 25, 27 p.
McQuarrie, N., 2004, Crustal scale geometry of the Zagros fold–thrust belt, Iran, Journal of Structural Geology, 26, 519–535.
Mirzaei, N., Gao, M. and Chen, Y. T., 1997a, Evaluation of uncertainty of earthquake parameters for the purpose of seismic zoning of Iran, Earthquake Research in China, 11, 197-212.
Mirzaei, N., Gao, M. and Chen, Y.T., 1998, Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces, Journal of Earthquake Prediction Research, 7, 465-495.
Molinaro, M., Guezou, J. C., Leturmy, P., Eshraghi, S. A. and de Lamotte D.F., 2004, The origin of changes in structural style across the Bandar Abbas syntaxis, SE Zagros (Iran), Mar. Pet. Geol., 21, 735 – 752.
Murase, K., 2004, A Characteristic Change in Fractal Dimension Prior to the 2003 Tokachi-oki Earthquake (MJ = 8.0), Hokkaido, Northern Japan, Earth Planets Space, 56, 401–405.
Nanjo, K. and Nagahama, H., 2004. Fractal properties of spatial distributions of aftershocks and active faults, Chaos, Solitons and Fractals, 19, 387–397.
NEIC/U.S. Geological Survey, 2014, Earthquake hazards program, National Earthquake Information Center, World data center for seismology, Denver, http//
Nissen, E., Jackson, J., Jahani, S. and Tatar, M., 2014, Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt?, Journal of Geophysical Research: Solid Earth, 10.1002/2013JB010796, 23 p.
Öncel, A.O. and Wilson, Th. H., 2002, Space-Time Correlations of Seismotectonic Parameters: Examples from Japan and from Turkey Preceding the Izmit Earthquake, Bull. Seismol Soc. Am., 92 (1), 339–349.
Öncel, A.O., Main, I., Alptekin, Ӧ. and Cowie, P., 1996, Spatial variations of the fractal properties of seismicity in the Anatolian fault zones, Tectonophisics, 257, 189–202.
Öztürk, S., 2012, Statistical correlation between b-value and fractal dimension regarding Turkish epicentre distribution, Earth Sci. Res. SJ., 2, 103 – 108.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M. and Péquegnat, C., 2010, Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran), In Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic (eds P. Leturmy & C. Robin), Geological Society of London, Special Publication, 330, 5–18.
Reasenberg, P. A., 1985, Second order moment of Central California seismicity, 1969-82, JGR, 90, 5479-5495.
Regard, V., Hatzfeld, D., Molinaro, M., Aubourg, C., Bayer, R., Bellier, O., Yamini-Fard, F., Peyret, M. and Abbassi, M., 2010, The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation, Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic (eds P. Leturmy and C. Robin), Geological Society, London, Special Publications, 330, 43–64.
Sarkarinejad, K., Mehdi Zadeh, R. and Webster, R., 2013, Two-dimensional spatial analysis of the seismic b-value and the Bouguer gravity anomaly in the southeastern part of the Zagros Fold-and-Thrust Belt, Iran: Tectonic implications, Journal of Asian Earth Sciences, 62, 308–316.
Sherkati, S. and Letouzey, J., 2004, Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful embayment), Iran, Mar. Pet. Geol., 21 (5), 535–554.
Singh, A. P., Mishra, O. P., Kumar, D., Kumar, S. and Yadav, R. B. S., 2012, Spatial variation of the aftershock activity across the Kachchh Rift Basin and its seismotectonic implications, J. Earth Syst. Sci., 121, 439–451.
Smith, L.A., 1988, Intrinsic limits in dimension calculations, Phys. Lett. A, 133, 283–288.
Stocklin, J., 1974, Possible ancient continental margins in Iran, in Geology of Continental Margins, edited by C. Burk and C. Drake, Springer-Verlag, New York, 873-877.
Talbot, C.J. and Alavi, M., 1996, The past of a future syntaxis across the Zagros, in Alsop, in Salt Tectonics, 100, 89–109, eds Alsop, G.I., Blundell., D.J. & Davison, I., Geological Society of America Special Paper.
Talebian, M. and Jackson, J., 2004, A reappraisal of earthquake focal mechanisms and active shorting in the Zagros Mountains of Iran, Geophys. J. Int., 156, 506–529.
Tatar, M., Hatzfeld, D. and Ghafory-Ashtiany, M., 2004, Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity, Geophys. J. Int., 156, 255–266.
Tatar, M., Hatzfeld, D., Martinod, J., Walpersdorf, A., Ghafory-Ashtiany, M. and Chery, J., 2002, The present-day deformation of the central Zagros from GPS measurements, Geophys. Res. Lett., 29, 33-1 to 33-4.
Tosi, P., De Rubeis, V., Loreto, V. and Pietronero, L., 2008, Space–time correlation of earthquakes, Geophys. J. Int., 173, 932–941.
Turcotte, D.L., 1986, Fractals and Fragmentation, J. Geophys. Res., 91 (B2), 1921- 1926.
Turcotte, D.L., 1997, Fractals and chaos in geology and geophysics, 2nd edition, Cambridge University press, Cambridge, New York.
Utsu, T., 1965, A method for determining the value of b in formula log N = a - bM showing the magnitudefrequency relation for earthquakes, Geophys. Bull. Hokkaido Univ., 13, 99-103.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. and Chéry, J., 2004, Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophys. J. Int., 157, 381–398.
Wiemer, S. and Wyss, M., 1997, Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?, J. Geophys. Res., 102, 15115- 15128.
Wiemer, S. and Wyss, M., 2000, Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States and Japan, Bull. Seismol. Soc. Am., 90, 859- 869.
Wiemer, S., 2001, A software package to analyze seismicity: ZMAP, Seis. Res. Lett., 72, 373–382.
Zamani, A. and Agh-Atabai, M., 2009, Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach, Journal of Geodynamics, 47, 271–279.
Zamani, A. and Agh-Atabai, M., 2011, Multifractal analysis of the spatial distribution of earthquake epicenters in the Zagros and Alborz-Kopeh Dagh regions of Iran, IJST, A1, 39-51.