معماریان، ا. و جمور، ی.، 1392، بررسی کارایی شبکههای عصبی مصنوعی در تخمین سرعت نقاط ژئودتیک، پایاننامۀ کارشناسی ارشد، زمستان 1392.
انصاری، ح. و داوری، ک.، 1386، پهنهبندی دورۀ خشک با استفاده از شاخص بارندگی استانداردشده در محیط GIS مطالعۀ موردی: استان خراسان، پژوهشهای جغرافیایی، 60، تابستان 1386.
Bogusz, J., Klos, A., Grzempowski, P. and Kontny, B., 2013, Modelling the velocity field in a regular grid in the area of poland on the basis of the velocities of European permanent stations, Pure and Applied Geophysics, doi: 10.1007/s00024-013-0645-2.
Chen, R., 1991, On the horizontal crustal deformations in Finland, Helsinki, Finish Geodetic Institute.
Coukuyt, I., Dhaene, T. and Demeester, P, 2013, ooDace toolbox: a matlab Kriging toolbox, getting started.
Gullu, M., Yilmaz, I., Yilmaz, M. and Turgut, B., 2011, An alternative method for estimating densification point velocity based on back propagation artificial neural networks, Studia Geophysica et Geodaetica, 55(1), 73-86.
Ghaffari Razin, M. R. and Mohammadzadeh, A., 2015, 3-D crustal deformation analysis using isoparametric method and multi-layer artificial neural networks (Case Study: Iran), Engineering Journal of Geospatial Information Technolog, 2015; 2 (4) :1-15.
Ghaffari Razin M. R. Voosoghi, B. Mohammadzadeh, A., 2015, Efficiency of artificial neural networks in map of total electron content over Iran. Acta Geod Geophys, DOI 10.1007/s40328-015-0143-3.
Ghaffari Razin M. R. and Voosoghi, B., 2016, Modeling of ionosphere time series using wavelet neural networks (case study: N-W of Iran), Advances in Space Research. doi:
http://dx.doi.org/10.1016/j.asr. 2016.04.006.
Haykin, S., 1994, Neural networks, a comprehensive foundation, Macmillan College Publishing Company, New York.
Mars, P., Chen, J. R. and Nambiar, R., 1996, Learning algorithms: theory and applications in signal processing, Control and Communications, CRC Press, Boca Raton, Florida.
Mashhadi Hossainali, M., 2006, A comprehensive approach to the analysis of the 3Dkinematics of deformation, Ph.D. thesis, Geodesy, Darmstadt, University of Darmstadt.
Matheron, G., 1971, The theory of regionalized variables, and its applications, Centre de Geostatistique, Fontainebleau, Paris.
Moghtased-Azar, K. and Zaletnyik, P., 2009, Crustal velocity field modeling with neural network and polynomials, in: Sideris, M.G., (Ed.), Observing our changing Earth, International Association of Geodesy Symposia, 133, 809-816.
Norgaard, M., 1997, Neural network based system identification toolbox, Technical Report, 97-E-51, Department of Automation, Technical University
of Denmark, Copenhagen, Denmark, 37p.
Segal, P. and Matthews, M. V., 1988, Displacement calculations from geodetic data and the testing of geophysical deformation models, Joural of Geophys. Research, 93, 14 954-14 966.
Simpson, P. K., 1990, Artificial neural systems: foundations, paradigms, applications, and implementations, Pergamon Press, New York.
Stanley, J., 1990, Introduction to neural networks, 3rd edition, Sierra Madre, California Scientific Software.
VanGorp, S., Masson, F. and Chéry, J., 2006, The use of Kriging to interpolate GPS velocity field and its application to the Arabia-Eurasia collision zone, Geophysical Research Abstracts, 8, 02120.
Voosoghi, B., 2000, Intrinsic deformation analysis of the earth surface based on 3-D displacement fields derived from space geodetic measurements, PhD Thesis, Department of Geodesy and Geoinformatics, Stuttgart University
Yilmaz, M., 2013, Artificial neural networks pruning approach for geodetic velocity field determination, BCG - Boletim de Ciências Geodésicas.