Albrecht, B. A., 1989, Aerosols, cloud microphysics, and fractional cloudiness. Science 245 (4923), 1227–1230.
Alizadeh-Choobari, O. and Gharaylou, M., 2017, Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmos. Res. 185, 53–64.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M. and Silva-Dias, M. A. F., 2004, Smoking rain clouds over the Amazon. Science 303 (5662), 1337–1342.
Arakawa, A., 2004, The cumulus parameterization problem: Past, present, and future. J. Clim. 17 (13), 2493–2525.
Colarco, P., Silva, A. d., Chin, M. and Diehl, T., 2010, Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. 115, D14207.
Collins, W. D., Conant, W. C. and Ramanathan, V., 1994, Earth radiation budget, clouds, and climate sensitivity, in: The chemistry of the Atmosphere: Its Impact on Global Change, edited by: J. G. Calvert, pp. 207-215. Blackwell Scientific Publishers, Oxford, UK.
Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46 (20), 3077–3107.
Fan, J., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J. and Yan, H., 2013, Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA 110 (48), E4581–E4590.
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li, Z., Martins, V. J. and Ovchinnikov, M., 2009, Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. 114, D22206.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O. and Lin, S. J., 2001, Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106 (D17), 20255–20273.
Hong, S. Y., 2010, A new stable boundary layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc. 136 (651), 1481–1496.
Hong, S. Y., Noh, Y. and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134 (9), 2318–2341.
Kain, J. S., 2004, The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 43 (1), 170–181.
Kaufman, Y. J. and Koren, I., 2006, Smoke and pollution aerosol effect on cloud cover. Science 313 (5787), 655–658.
Khain, A. P., BenMoshe, N. and Pokrovsky, A., 2008, Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 65 (6), 1721–1748.
Köhler, H., 1936, The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152.
Lebo, Z. J. and Morrison, H., 2014, Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Weather Rev. 142 (3), 991–1009.
Lee, S. S., Donner, L. J., Phillips, V. T. J. and Ming, Y., 2008, The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res. 113, D16202.
Lee, S. S., Feingold, G. and Chuang, P. Y., 2012, Effect of aerosol on cloud- environment interactions in trade cumulus. J. Atmos. Sci. 69 (12), 3607–3632.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D. and Ding, Y., 2011, Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci. 4 (12), 894 – 888.
Lohmann, U. and Feichter, J., 2005, Global indirect aerosol effects: a review. Atmos. Chemis. Phys. 5 (3), 715–737.
Menon, S., Genio, A. D. D., Koch, D. and Tselioudis, G., 2002, GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. J. Atmos. Sci. 59 (3), 692–713.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A.,1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102 (D14), 16663–16682.
Rosenfeld, D., 1999, TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26 (20), 3105.
Rosenfeld, D., 2006, Aerosol-cloud interactions control of earth radiation and latent heat release budgets. Space Sci. Rev. 125, 149–157.
Rosenfeld, D. and Lensky, I. M., 1998, Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteorol. Soc. 79 (11), 2457–2476.
Rosenfeld, D., Rudich, Y. and Lahav, R., 2001, Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 98 (11), 5975–5980.
Rosenfeld, D. and Woodley, W. L., 2000, Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C. Nature 405, 440–442.
Rossow, W. B., Walker, A. W. and Garder, L. C., 1993, Comparison of ISCCP and other cloud amounts. J. Clim. 6 (12), 2394–2418.
Rotstayn, L. D. and Penner, J. E., 2001, Indirect aerosol forcing, quasi forcing, and climate response. J. Clim. 14 (13), 2960–2975.
Storer, R. L., van den Heever, S. C. and Stephens, G. L., 2010, Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci. 67 (12), 3904–3915.
Shepherd, T.G., 2014, Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708. http://dx.doi.org/10.1038/NGEO2253.
Tao, W. K., Chen, J. P., Li, Z., Wang, C. and Zhang, C., 2012, Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50 (2).
Thompson, G. and Eidhammer, T., 2014, A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 71 (10), 3636–3658.
Twomey, S., 1977, The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34 (7), 1149–1152.
Zhang, D. and Anthes, R. A., 1982, A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 21 (11), 1594–1609.
Zhang, J., Lohmann, U. and Stier, P., 2005, A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J. Geophys. Res. 110, D15S07.