Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province)

Authors

1 Assistant Professor, Dept. of Range and Watershed Management, Faculty of Agricultural and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 PhD Student in Watershed Management Sciences & Engineering, Young Researchers and Elite Club, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran

Abstract

Drought indices are commonly used to quantify and assess drought characteristics. The Standardized Precipitation Index (SPI), and recently introduced Standardized Precipitation-Evapotranspiration Index (SPEI) are considered as universal meteorological drought indices which allow comparisons of drought conditions across different climate regions. The SPI captures anomalies in precipitation, whereas the SPEI estimates anomalies in climatic water balance that incorporates temperature. The main aim of this study is to compare historical drought occurrence based on SPI and SPEI indices using R programming. The SPEI index is used because of multi-scalar nature of index and the advantage of identifying the multi-temporal nature of droughts. According to data availability, seven synoptic stations were selected for a drought analysis across Kurdistan Province. The two-parameter gamma distribution was used for calculating SPI across the study period (1995-2013) and stations within the study area. The potential evapotranspiration (PET) was computed using the Thornthwaite's equation, and then the SPEI is calculated at a monthly temporal resolution using SPEI package in R software. The SPI and SPEI values are calculated and then the statistical analysis along with significant level scatter plot was performed. The graphical plot of 3-month SPI and SPEI values were prepared to visualize the capabilities of used indices in determination of wet and dry spells over studied stations. The relationships between computed SPI and SPEI values were analyzed using correlation coefficient and p-value at each station. The results indicated that some differences in the pattern and sequence of wet and dry spells exist based on calculated indices. Also, the SPEI index identified the longer wet and dry spell conditions than SPI in almost all cases. The results of the comparative analysis indicated that the SPI and SPEI were varied between 0.19 (p<0.01), and 0.52 (P<0.01), which were statistically significant in all stations. A very low correlation between the SPI and SPEI was identified in Saghez station (correlation coefficient= 0.19), which seems to be due to evapotranspiration and moisture loss during spring/summer with the increasing temperatures that is accounted for by SPEI. The highest correlation coefficient was calculated between SPI and SPEI in the Sanadaj station (0.52%). Since, the SPEI accounts temperature in defining drought spells, therefore, it is advisable to use SPEI instead of SPI for drought assessment. According to the graphical interpretation of the results, there was large difference between the droughts depicted by the precipitation-based SPI and the temperature influenced SPEI. Also the SPEI captured the influence of temperature and depicted severe and longer duration droughts which provide support for better performance and reliability of the SPEI index. It should be noted that in terms of lack of data, evapotranspiration can be calculated by simple methods such as Thornthwaite, but considering detailed available data, the Hargreaves and Penman methods can be used to determine drought occurrences in the SPEI calculation. The calculation of drought indices should be simple and statistically reliable, in this regard, SPEI indicators in different climatic conditions and climate change issues has a significant advantage. Also, more climate variables are needed to calculate the SPEI index than the SPI index. Also, the calculated evapotranspiration value is sensitive to the used method and requires a longer data period with natural variabilities. Further research is recommended in other climatic regions which is needed for comparison of SPEI with other common drought indices to draw comprehensive conclusions.

Keywords

Main Subjects


باقری، ر. و محمدی، ص.، 1391، بررسی تغییرات مکانی خشک‌سالی با استفاده از زمین‌آمار در استان کرمان در یک دورة آماری سی‌ساله (1349-1379)، فصلنامه تحقیقات مرتع و بیابان ایران، 19(2)، 313-321.
بنی‌مهد، س. ا. و خلیلی، د.، 1393، تحلیل انتقالِ گروه های خشک‌سالی با استفاده از زنجیرة مارکف و روش خطی-لگاریتمی، راهکاری برای اعلام هشدار اولیه، م. علوم و مهندسی آبخیزداری، 8(4)، 37-56.
بنی‌مهد، س.ا. و خلیلی، د.، 1391، تجزیه‌و‌تحلیل مقایس‌های رفتار شاخص‌های خشک‌سالی هواشناسی SPEI و SPI با به‌ کارگیری آزمون‌های پارامتری و ناپارامتری همبستگی در ایستگاه‌های منتخب ایران، اولین کنفرانس ملی راهکارهای دستیابی به توسعة پایدار، تهران.
تاج‌بخش، س.، عیسی‌خانی، ن. و فضل‌کاظمی، ا.، 1394، ارزیابی خشک‌سالیهواشناسیدرایران با استفادهازشاخص استاندارد شدة بارش و تبخیر و تعرق، م. فیزیک زمین و فضا، 41(2)، 313-321.
زارع ابیانه، ح.، قبائی‌سوق، م. و مساعدی، ا.، 1394، پایش خشک‌سالی بر مبنای شاخص بارش- تبخیر و تعرق استاندارد شده (SPEI) تحت تأثیر تغییر اقلیم، م. آب و خاک، 29(2)، 374-392.
سلطانی، س. و سعادتی، س. س.، 1386، پهنه‌بندی خشک‌سالی در استان اصفهان با استفاده از نمایه بارش استاندارد (SPI)، م. علوم مهندسی آبخیزداری ایران، 1(2)، 64-67.
مساعدی، ا.، خلیل‌زاده، م. و محمدی استادکلایه، ا.، 1387، پایش خشک‌سالی هواشناسی در سطح استان گلستان، مج. علوم کشاورزی و منابع طبیعی، 15(2)، 176-183.
مصطفی‌زاده، ر. شهابی، م. و ذبیحی، م.، 1394، تحلیل خشک‌سالی هواشناسی در استان کردستان با استفاده از مدل نمودار سه‌متغیره، م. آمایش جغرافیایی فضا، 17، 129-140.
نصرتی، ک.، 1393، ارزیابی شاخص بارش- تبخیر و تعرّق استاندارد شده (SPEI) جهت شناسایی خشک‌سالی در اقلیم‌های مختلف ایران، علوم محیطی، 12(4). 74-63.
 
 
Abramopoulos, F., Rosenzweig, C. and Choudhury, B., 1988, Improved ground hydrology calculations for global climate models (GCMs), Soil water movement and evapotranspiration, J. of Climate, 1, 921-941.
Chang, T. J. and Cleopa, X. A., 1998, A proposed method for drought monitoring, Water Resources Bulletin., 27, 275-281.
Edwards, D. C. and McKee, T. B., 1997, Characteristics of 20th century drought in the United States at multiple scales, J. of the Atmospheric Sciences., 634, 1-30.
Heim, R. R., 2002, A review of twentieth-century drought indices used in the United States, Bulletin of the American Meteorological Society, 83, 1149-1165
Hu, Q. and Willson, G. D., 2000, Effect of temperature anomalies on the Palmer drought severity index in the central United States, International J. of Climatology., 20, 1899-1911.
Keyantash, J. and Dracup, J., 2002, The quantification of drought: an evaluation of drought indices, Bulletin of the American Meteorological Society., 83, 1167-1180.
Livia, L., Lukas, S. and Gunther, H., 2014, The comparison of the SPI and the SPEI using COSMO model data in two selected Slovakian river basins, EGU General Assembly, Vienna, Austria.
Mavromatis, T., 2007, Drought index evaluation for assessing future wheat production in Greece, International J. of Climatology, 27, 911-924.
McKee, T. B., Doesken, N. J. and Kleist, J., 1993, The relationship of drought frequency and duration to time scales, In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
Mishra, A. and Singh, V. P., 2010, A review of drought concepts, Journal of Hydrology, 391, 202-216.
Kumar, N., M., Murthy, C. S., Sesha Sai, M. V. R. and Roy, P. S., 2009, On the use of Standardized Precipitation Index (SPI) for drought intensity assessment, Meteorological Applications, 16, 381-389.
Paulo, A. A., Rosa R. D. and Pereira, L. S., 2012, Climate trends and behavior of drought indices based on precipitation and evapotranspiration in Portugal, Natural Hazards and Earth System Sciences, 12, 481-1491.
Potop, V. and Mozny, M., 2011, The application a new drought index- standardized precipitation evapotranspiration index in the Czech Republic, ISBN 978-80-86690-87-2.
Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J. P. and Menzel, A., 2006, Heat and drought 2003 in Europe: a climate synthesis, Annals of Forest Sciences, 63, 569-577.
Singh, V. P., Guo, H. and Yu, F. X., 1993, Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome, Stochastic Hydrology and Hydraulics, 7, 163-177.
Stagge, J. H., Tallaksen, L., Gudmundsson, L., Van Loonc, A. F. and Stahl, K., 2015, Candidate distributions for climatological drought indices (SPI and SPEI), International J. of Climatology, doi: 10.1002/joc.4267.
Thornthwaite, C. W., 1948, An approach toward rational classification of climate, Geographical Review., 38, 55-94.
Tomros, T. and Menzel, L., 2014, Addressing drought conditions under current and future climates in the Jordan River region, Hydrology and Earth System Sciences., 18, 305-318.
Vicente-Serrano, S. M., Begueria, S. and Lopez-moreno, J. I., 2010, A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index-SPEI, J. of Climate, 23(7), 1696-1718.
Vicente-Serrano, S. M., Begueria, S., Lorenzo-Lacruz, J., Julio Camarero, J., Lopez-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E. and Sanchez-Lorenzo, A., 2012, Performance of drought indices for ecological, agricultural, and hydrological applications, Earth Interactions., 16, 1-27.
Wu, H., Hayes, M. J., Wilhite, D. A. and Svoboda, M. D., 2005, The effect of the length of record on the standardized precipitation index calculation, Int J of Climatolog, 25(4), 505-520.