Identification of spatial-temporal of cyclones changes in Mediterranean using numerical detection algorithm



Today, extra tropical cyclones are recognized not only for the important influence they exert on midlatitude weather conditions but also for their integral role in the earth’s climate system. (Gary luckmann, 2012). Extra tropical cyclones are fundamental meteorological features and play a key role in a broad range of weather phenomena. They are a central component maintaining the global atmospheric energy, moisture, and momentum budgets. They are on the one hand responsible for an important part of our water supply, and on the other are intimately linked with many natural hazards affecting the middle and high latitudes (wind damage, precipitation-related flooding, storm surges, and marine storminess). Thus, it is important to provide for society an accurate diagnosis of cyclone activity, which includes a baseline climatology of extra tropical storms (e.g., Hoskins and Hodges 2002). Identifying and tracking extra tropical cyclones might seem, superficially, to be a straightforward activity, but in reality it is very challenging (Urs neu and etal, 2013). One of the region of cyclogenesis is Mediterranean Sea in north hemisphere that positive vorticity and cyclogenesis occurred in west and east of this sea.
There are many study with numerical method about cyclogenesis in Mediterranean Sea and at first Petersen 1957, had identified the cyclone frequency in Mediterranean in north hemisphere study. Alpert and etal 1990, study the cyclogenesis in west and east of Mediterranean Sea and found that vorticity in Mediterranean Sea have main role in cyclogenesis in Mediterranean region, also lee ward cyclogenesis have main role in Geneva golf and cypress. One of the first study that performed about impact of cyclones of Mediterranean over climate of Iran is Alijani research, 1364, that he found that this feature have main impact on climate of Iran. Sedaghat and others 1378, had been studied the cyclone tracking of cyclone in middle east and they said that the most of cyclone are in west and North West of Iran. One of the most reason of this study is identify of spatial temporal change of Mediterranean cyclone. Because the climate change and global warming caused the change in atmospheric general circulation and change in atmospheric phenomena.
For numerical cyclone detection used the ERA-Enterim database, this is last reanalysis of global atmosphere by ECMWF by Dee and etal, 2011 which available in six hours interval and with resolution 0.5*0.5 longitude and latitude in duration of 1980 to 2013. The cyclone positions are defined by local minima of the geopotential height (z1000) of the 1000-hPa surface considering the neighborhood of eight grid points. Additionally, in order to locate intense vortices, the mean vorticity of a minimum point in 600 km radios required. (Blender and Etal, 1999) The threshold of mean vorticity is 5*〖10〗^(-5) s^(-1)because in this region there are shallow and thermal low and this is the best threshold for exclude of those. After calculation of cyclogenesis the spatial-temporal change of those identify with frequency sum and mean center for three duration of eleven years.
Spatial distribution cyclones shows in Figure 2 and include of 12180 cyclone in this region. As see in fig 2 the more cyclogenesis occurred in the west of Mediterranean and the most concentration of those are in west and east of Italia whatever we move to east of Mediterranean decrease from the cyclone concentrations the main center of cyclongenesis in east of Mediterranean are in cypress coast and Turkish west coast. It is considerable that in any time cyclone with more than one frequency are in Iran.
About of 14 percent of cyclones in Mediterranean occurred in January that mostly composed in west and east of Italia, in additional in this month cyclone concentration are in Turkish and Syria. The most frequency of cyclogenesis occurred in February and the lowest frequency of those occurred in the July. The trend of cyclogenesis in Mediterranean are positive and cyclones are increasing by 1.04 coefficient in each year. But the coefficient of determination in the regression equation are very low and nearest to the zero this shows that the regression equation couldn’t show the logic correlation between time and cyclone frequency. The trend month of cyclone in Mediterranean in May, July, august and October are negative and in others months are positive. But in month trend such as years trend the coefficient of determination of regression equation are low. The result show that the temporal trend of cyclogenesis in Mediterranean don’t change in this study area. The mean center of cyclogenesis show that the center of mean cyclone in the three duration have a shift to west and north latitude.


Main Subjects

احمدی گیوی، ف. و میرزایی، م.، 1386، بررسی دینامیکی جبه هزایی سطوح زبرین در سه سامانة چرخندی روی ایران و خاورمیانه، م.، 33(2)، 130-115.
اسعدی، ع.، احمدی گیوی، ف.، قادر، س. و محب‌الحجه، ع. ر.، 1390، بررسی دینامیک مسیر توفان مدیترانه از دیدگاه شار فعالیت موج راسبی، م. ژئوفیزیک ایران، 5(4)، 45-31.
ایران‌نژاد، پ.، احمدی گیوی، ف. ومحمدنژاد، ع. ر.، 1388، اﺛﺮ ﻣﺮاﻛﺰ ﭼﺮﺧﻨﺪزای ﻣﺪﻳﺘﺮاﻧﻪ ﺑﺮ ﺑﺎرش ﺳﺎﻻﻧة اﻳﺮان 1960 در دوره ﺗﺎ 2002، م. ژئوفیزیک ایران، 3(1)، 105-91.
حجازی‌‌زاده، ز. و صداقت، م.، 1387، مسیریابی رقومی سیکلون‌های خاورمیانه در دورة سرد سال، پژوهش‌های جغرافیای طبیعی، 69، 1-17.
رضائیان، م.، محب‌‌الحجه، ع. ر.، احمدی گیوی، ف. و نصراصفهانی، م. ع.، 1393، تحلیل آماری-دینامیکی رابطة بین مسیر توفان مدیترانه و نوسان اطلس شمالی برمبنای فرایافت فعالیت موج، م. فیزیک زمین و فضا، 40(2)، 152-139.
علیجانی، ب.، 1366، رابطة پراکندگی مکانی سیکلون‌‌‌های خاورمیانه با سیستم‌‌‌های هوایی سطح بالا، م. تحقیقات جغرافیای 1366.
احمدی گیوی، ف.، محب‌الحجه، ع. ر. و قرایلو، م.، 1385، مطالعة دینامیک سامانه‌های چرخندی روی ایران از دیدگاه تاوایی پتانسیلی: مطالعة موردی برای

آذر ماه 1382، م. فیزیک زمین و فضا، 32(1)، 13-1.
Alpert, P., Neeman, B. U. and Shay-El, Y., 1990a, Climatological analysis of Mediterranean cyclones using ECMWF data. TellusA, 42, 65-77.
Alpert, P., Neeman, B. U. and Shay-El., Y., 1990b, Intermonth variability of cyclone tracks in the Mediterranean., J Clim., 3, 1474-1478.
Bartholy, J., Pongracz, R. and Pattantyus-Abraham, M., 2009, Analyzing the genesis, intensity and tracks of western Medi- terranean cyclones, Theor. Appl. Climatol., 96, 133-144.
Blender, R. and Schubert, M., 2000, Cyclone tracking in different spatial and temporal resolutions, Mon. Wea. Rev., 128, 377-384.
Blender, R., Fraedrich, K. and Lunkeit, F., 1997, Identification of cyclone-track regimes in the North Atlantic, Quart. J. Roy. Meteor. Soc., 123, 727-741.
Campins, J., Genove´s, A., Jansa`, A., Guijarro, J. A. and Ramis, C., 2000, A catalogue and a classification of surface cyclones for the Western Mediterranean, Int. J. Climatol., 20, 969-984.
Deea, D. P., Uppalaa, S. M., Simmonsa, A. J. , Berrisforda, P., Polia, P., Kobayashib, S., Andraec, U., Balmasedaa, M. A., Balsamoa, G., Bauera, P., Bechtolda, P., Beljaarsa, A. C. M., Bergd, van de L., Bidlota, J., Bormanna, N., Delsola, C., Dragania, R., Fuentesa, M., Geera, A. J., Haimbergere, L., Healya, S. B., Hersbacha, H., H´olma, E. V., Isaksena, L., Kallbergc, P., Kohlera, M., Matricardia, M., McNallya, A. P., Monge-Sanzf, B. M., Morcrettea, J.-J., Parkg, B.-K., Peubeya, C., Rosnaya, de P., Tavolatoe, C., Th´epauta, J.-N. and Vitarta, F., 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 1972-1990.
Flocas, H., Simmonds, I., Kouroutzoglou, j., keay, K., 2010, On Cyclonic Tracks over the Eastern Mediterranean, Journal of Climate, Volume 23, October 2010
Hanley, J., and R. Caballero, 2012, Objective identification and tracking of multicentre cyclones in the ERAInterim reanalysis data set, Quart. J. Roy. Meteor. Soc., 138, 612-625.
Hewson, T. D. and Titley, H. A., 2010, Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution, Meteor. Appl., 17, 355-381.
Hodges, K. I., 1995, Feature tracking on the unit sphere, Mon. Wea. Rev., 123, 3458-3465.
Hoskins, B. J. and Hodges, K. I., 2002, New perspectives on the Northern Hemisphere winter storm tracks, J. Atmos. Sci., 59, 1041-1061.
Inatsu, M., 2009, The neighbor enclosed area tracking algorithm for extra tropical wintertime cyclones, Atmos. Sci. Lett., 10, 267-272.
Liberato, M. R. L., Pinto, J. G., Trigo, I. F. and Trigo, R. M., 2011, Klaus an exceptional winter storm over north- ern Iberia and southern France, Weather, 66, 330-334.
Lionello, P., Dalan, F. and Elvini, E., 2002, Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios, Climate Res., 22, 147-159.
Lolis, C, J., Metaxas, D. A. and Bartzokas, A., 2008, On the intra-annual variability of atmospheric circulation in the Mediterranean region, Int. J. Climatol., 28, 1339-1355.
Luckman, G., 2012, Mid-latitude synoptic meteorology, America Meteorology Society.
Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and Z.-C. Zhao, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis.  Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Patwardhan, S., Kulkarni, A. and Kumar, K., 2012, Impact of global warming on cyclonic disturbances over south Asian region, J. Earth Syst. Sci., 121(1), 203-210.
Mitchell, A., 2005, The ESRI guide to GIS analysis, Volume, 2. ESRI Press,
Murray, R. J. and Simmonds, I., 1991, A numerical scheme for tracking cyclone centers from digital data, Part I: Development and operation of the scheme, Aust. Meteor. Mag., 39, 155-166.
Petterssen, S., 1956, Weather analysis and forecasting, (1), 2nd ed. McGraw Hill, 269 pp.
Picornell, M. A., Jansa`, A., Genoves, A. and Campins, J., 2001, Automated database of mesoscyclones from the HIRLAM (INM) 20.58 analyses in the Western Mediterranean, Int. J. Climatol., 21, 335-354.
Raible, C. C., Della-Marta, P. M., Schwierz, C., Wernli, H. and Blender, R., 2008, Northern hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyzes, Mon. Wea. Rev., 136, 880-897.
Serreze, M. C., 1995, Climatological aspects of cyclone development and decay in the Arctic, Atmos.–Ocean, 33, 1-23.
Simmonds, I., Murray, R. J. and Leighton, R. M., 1999, A refinement of cyclone tracking methods with data from FROST, Aust. Meteor. Mag., Special Issue, 35-49.
Sinclair, M. R., 1944 An objective cyclone climatology for the Southern Hemisphere, Mon. Wea. Rev., 122, 2239-2256.
Sinclair., 1997, Objective identification of cyclones and their circulation intensity, and climatology, Wea. Forecasting, 12, 591-608.
Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclonesintheMediterranean region. J. Climate,12, 1685–1696.
Trigo, I. F., 2006, Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-
40 and NCEP/NCAR reanalyses, Climate Dyn., 26, 127-143.
Ulbrich, U., Leckebusch, G. C. and Pinto, J. G., 2009, Extra-tropical cyclones in the present and future climate: a review, Theor. Appl. Climatol., 96, 117-131.
Urs, N., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K. S., Grieger, J., Gulev, S., ley, J. H., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Gregor, C., Margarida, L., Liberato, L. R., Lionello, P., Igor, I., Joaquim, M., Pinto, G.  Raible C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L. and Wernli, H., 2013, A community effort to intercompare extratropical cycloned and tracking algorithms, American Meteorological Society, (10.1175/BAMSD- 11-00154.2).