Evaluating the sensitivity of RegCM4 model to types of Convection Parameterization Schemes on the modeling of springtime precipitation in the North West of Iran: (Case Study: Spring 2004)


1 Professor, Department of Climatology, University of Tabriz, Tabriz, Iran

2 Assistant Professor, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

3 Ph.D. Student, Department of Climatology, University of Tabriz, Tabriz, Iran


In order to implement Limited Area Models (LAMs) for a new area, an appropriate domain size, an ideal horizontal and vertical resolution, an appropriate Initial and lateral boundary conditions, and an appropriate Convection Parameterization Schemes (CPSs) are the most important challenges that should be considered. RegCM4 model provides several options, in relation to convection and land surface schemes. Therefore, one of the very important issues is the choice of an appropriate CPS in the model. In fact, precipitation is the most challenging variable which should be considered in numerical modeling. In this regard, using different CPSs could have a significant impact on precipitation characteristics such as intensity, frequency, and spatiotemporal variations. Various studies have been done to evaluate the sensitivity of convective schemes on the simulated variables, particularly precipitation. Suffice to say that all of the studies reveal the importance and impact of CPSs on the simulation results.
In this study, the Regional Climate Model version 4 (RegCM4.1) was used to evaluate types of CPSs to simulation of springtime precipitation in the North West of Iran (NWI). For this purpose, all conditions such as domain size, vertical and horizontal resolution, initial and lateral boundary conditions have been set uniformly and three experiments were conducted with three CPSs with a 20km horizontal resolution for the Spring 2004 (March, April, May and June) as a typical Spring season. One-month spin-up was considered for the simulation and then at each simulation the model was run at the beginning of February 2004. In order to analyze the effects of the boundary conditions (BCs) on the model simulations, the ERA-interim data with a horizontal resolution of 1.5°´1.5° were employed to provide the lateral boundary conditions for RegCM4. Various types of data were used to evaluation the RegCM4 performance for large-scale and convective precipitation. The monthly and seasonal precipitation of APHRODITE, AgMMERA, CHIRPS and PERSIANN CDR gridded data were used for validation of large-scale precipitation. ERA-Interim data with a horizontal resolution of 0.25°´0.25° spanning 4 months from March to June 2004 were used for validation and evaluation of convective precipitation over two different domains, i.e. the Middle East (ME) and NWI. For evaluation of most appropriate CPS, quantity correlation coefficient, standard deviation, and root mean square error (RMSE) has been demonstrated using Taylor diagrams, and also the bias or average error of precipitation estimation has been calculated
The results show that overall precipitation patterns demonstrated by four Satellite / Rain gauge based gridded precipitation data are coincided to each other. The maximum amount of precipitation in the area has occurred between the Caspian Sea and the Black Sea in accordance with the North Caucasus. The highest amount of seasonal rainfall by the CHIRPS data is demonstrated in the eastern edge of the Black Sea and the southern coast of the Caspian Sea and the lowest amount in the same regions are related to the APHRODITE data. In terms of spatial distribution, AgMMERA and CHIRPS show more details of precipitation occurrence in compared to PERSIANN CDR and APHRODITE data is estimating total precipitation of four months with three Convective schemes, it becomes clear that, there is a high relative agreement between simulated and observed precipitation, in terms of spatial distribution. The highest estimates of total precipitation are related to Kuo scheme which occurs in a small region of the Black Sea coast and the total amount is up to 1600 mm. Evaluation of CPSs in the estimating of convective precipitation has revealed that they have different simulations on the smaller domain of NWI than to larger domain (i.e. ME). Generally, Emanuel scheme has simulated the large-scale precipitation with highest overestimates while the Kuo Scheme has simulated more balanced conditions of the precipitation. Calculation of the error and bias for convective precipitation amounts revealed that all three schemes had a negative bias in simulating of convective precipitation both for ME and NWI. Generally, the model has simulated an underestimation of convective precipitation in comparison with observations. Results also indicate that the RegCM4 model is not very sensitive to the type of CPS to simulate large scale and convective precipitation in the two first months of Spring (i.e. March and April), while the model is more sensitive to simulate the precipitation for May and June. Evaluating the CPSs performance in the simulation of large-scale and convective precipitation indicates that the Kuo scheme has a relative superiority in comparison to Emanuel and Grell schemes. Also, the model simulation with Kuo scheme over the larger domain (i.e. ME) and Emanuel scheme in the smaller domain (i.e. NWI), have the least bias in simulating the total spring convective precipitation. Due to the relatively higher performance of the Kuo Scheme compared to others, this scheme was chosen as the most appropriate way to simulate the large scale and convective precipitation of the Spring over the study area.


Main Subjects

ایران‌نژاد، پ.، احمدی‌گیوی، ف. و پازوکی، ر.، 1388، نقش روش‌های متفاوت پارامترسازی همرفت در شبیه‌سازی میدان‌های دما و بارش زمستانی با مدل منطقه‌ای- اقلیمی RegCM در منطقه ایران، مجله فیزیک زمین و فضا، دوره 35، شماره 1، 120-101.
بابائیان، ا.، کریمیان، م.، مدیریان، ر. و حبیبی نوخندان، م.، 1386، شبیه‌سازی بارش ماه‌های سرد سال‌های 1376 و 1379 با استفاده از مدل اقلیمی RegCM3. جغرافیا و توسعه، شماره 10، 72-55.
علیجانی، ب.، 1387، آب و هوای ایران، چاپ هشتم، انتشارات دانشگاه پیام نور، تهران.
قرایلو، م.، مزرعه‌فراهانی، م. و علی‌اکبری بیدختی، ع.، 1389، بررسی طرحواره‌های پارامترسازی همرفت کومه‌ای در مدل‌های بزرگ و میان‌مقیاس، مجله فیزیک زمین و فضا، دوره 36، شماره 1، 192-171.
قهرمان، ن.، بابائیان، ا.، آزادی، م. و لوک‌زاده، ص.، 1394، پس‌پردازش آماری برونداد بارش مدل RegCM4 روی شمال‌غرب ایران. پژوهش‌های جغرافیای طبیعی، دوره 47، شماره 3، 398-385.
کارخانه، م.، مفیدی، ع. و زرین، آ.، 1395، شبیه سازی نقش دریای خزر بر وقوع بارش‌های منطقه‌ای در سواحل جنوبی دریای خزر، جغرافیا و آمایش شهری-منطقه ای، 18، 168-153.
کریمیان، م.، مدیریان، ر. و بابائیان، ا.، 1388، بررسی توانمندی مدل RegCM3 در مدل سازی بارش و دمای استان خراسان، مطالعه موردی: زمستان‌های دوره 2000-1991، فصلنامه تحقیقات جغرافیایی، شماره 97، 186-168.
محمدی، ف.، 1392، امکان سنجی پیش بینی فصلی بارش دوره سرد سال در استان فارس، پایان نامه کارشناسی ارشد آب و هواشناسی، گروه جغرافیای دانشگاه فردوسی مشهد، آذرماه 1392، 138 صفحه.
محمدی، ف.، زرین، آ. و بابائیان، ا.، 1394، کارایی مدل اقلیمی RegCM4 در شبیه سازی بارش دوره سرد استان فارس، مطالعه موردی: دوره 2010-1990، فیزیک زمین و فضا، دوره 41، شماره 3، 524-511.
مسعودیان، س. ا.، 1390، آب و هوای ایران، چاپ اول، انتشارات دانشگاه اصفهان. 
Adeniyi, M. O., 2014, Sensitivity of different convection schemes in RegCM4 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa, Theor. Appl. Climatol., 115(1-2), 305-322.
Ali, S., Dan, L., Fu, C. and Yang, G., 2015, Performance of convective parameterization schemes in Asia using RegCM: Simulations in three typical regions for the period 1998–2002, Adv. Atmos. Sci., 32(5), 715-730.
Almazroui, M., lam, M. N., Al-Khalaf, A. K. and Saeed, F., 2015, Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain, Theor. Appl. Climatol., 124(3), 807-823.
Anthes, R. A., Hsie, E. Y. and Kuo, Y. H., 1987, Description of the Penn State/ NCAR Mesoscale Model, Version 4 (MM4). Technical note (No. PB-87-190633/ XAB; NCAR/TN-282-STR), National Center for Atmospheric Research, Boulder, CO (USA).
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R. and Prat, O. P., 2015, PERSIANN-CDR: Daily precipitation climate data record from multi-satellite observations for hydrological and climate studies, Bull. Am. Meteorol. Soc., 96(1), 69–83, doi:10.1175/BAMS-D-13-00068.1.
Chow, K. C. and Chan, J. C., 2010, A Dual-scheme approach of cumulus parameterization for simulating the Asian summer monsoon, Meteorol. Appl., 17(3), 287-297.
Cotton, W. R., Bryan, G. and Van den Heever, S. C., 2011, Storm and Cloud Dynamics, Vol. 99, Academic press, Second Edition, 820p.
Dash, S. K.., Shekhar, M. S. and Singh, G. P., 2006, Simulation of Indian summer monsoon circulation and rainfall using RegCM3, Theor. Appl. Climatol., 86(1-4), 161-172.
Davis, N., Bowden, J., Semazzi, F., Xie, L. and Önol, B., 2009, Customization of RegCM3 regional climate model for eastern Africa and a tropical Indian Ocean domain, J. Climate, 22(13), 3595-3616.
Dee, D. P. and 35 Co-Authors, 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553-597.
Dickinson, R. E., Kennedy, P. J. and Henderson-Sellers, A., 1993, Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model, National Center for Atmospheric Research, Climate and Global Dynamics Division.
Elguindi, N., Bi, X., Giorgi, F., Nagarajan, B., Pal, J., Solmon, F. and Giuliani, G., 2013, Regional Climate Model RegCM User Manual Version 4.4, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, Trieste, Italy, October 2013, 54p.
Emanuel, K. A., 1991, A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48(21), 2313-2329.
Evans, J. P., Smith, R. B. and Oglesby, R. J., 2004, Middle East climate simulation and dominant precipitation processes, Int. J. Climatol., 24(13), 1671-1694.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S. and Michaelsen, J., 2015, The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes, Scientific data, 2:150066, doi: 10.1038/sdata.2015.66.
Gochis, D. J., Shuttleworth, W. J. and Yang, Z. L., 2002, Sensitivity of the modeled North American monsoon regional climate to convective parameterization, Mon. Wea. Rev., 130(5), 1282-1298.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, B. M. and Bi, X. Q., 2012, RegCM4: model description and illustrative basic performance over selected CORDEX domains, Clim. Res., 52, 7-29.
Grell, G. A., 1993, Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev., 121(3), 764-787.
Holtslag, A. A. M., de Bruijn, E. I. F. and Pan, H. L., 1990, A high resolution air mass transformation model for short-range weather forecasting, Mon. Wea. Rev., 118, 1561-1575.
Hwu, W., Sorooshian, S., Gao, X. and Famiglietti, J. S., 1999, Intercomparisons of ECMWF ERA and TOGA data with observations for the 1993 Great Flood, J. Geophys. Res. Atmos., 104(D16), 1936719382.
Liang, X. Z., Xu, M., Kunkel, K. E., Grell, G. A. and Kain, J. S., 2007, Regional climate model simulation of US-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations, J. Climate, 20(20), 5201-5207.
Lin, R., Zhou, T. and Qian, Y., 2014, Evaluation of global monsoon precipitation changes based on five reanalysis datasets, J. Climate, 27(3), 1271-1289 .
Molinari, J., 1993, An Overview of Cumulus Parameterization in Mesoscale Models. In: The representation of cumulus convection in numerical models, Edited by: K.A., Emanuel and D.J., Reymond, American Meteorological Society, Meteorological Monographs, 24 (46), 155-158.
Pal, J. S., Eltahir, E. A. and Small, E. E., 2000, Simulation of regional-scale water and energy budgets- Representation of subgrid cloud and precipitation processes within RegCM, J. Geophys. Res. Atmos., 105(D24), 29579-29594.
Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X. and Ashfaq, M., 2007, Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET, Bull. Amer. Meteor. Soc., 88(9), 1395.
Park, J. -H., Oh, S. -G. and Suh, M. -S., 2013, Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain, J. Geophys. Res. Atmos., 118, 1652–1667, doi:10.1002/ jgrd. 50159.
Rahman, M. M., Islam, M. N., Ahmed, A. U. and Afroz, R., 2007, Comparison of RegCM3 simulated meteorological parameters in Bangladesh: Part I–preliminary result for rainfall, SriLankan J. Phys., 8, 1-9.
Ruane, A. C., Goldberg, R. and Chryssanthacopoulos, J., 2015, Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation, Agr. Forest. Meteorol., 200, 233-248.
Sorooshian, S., Hsu, K. L., Imam, B. and Hong, Y., 2005, Global precipitation estimation from satellite image using artificial neural networks, J. Appl. Meteorol., 36, 1176-1190.
Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res. Atmos., 106(D7), 7183-7192.
Wang, W. and Seaman, N. L., 1997, A comparison study of convective parameterization schemes in a mesoscale model, Mon. Wea. Rev., 125(2), 252-278.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N. and Kitoh, A., 2012, APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, Bull. Amer. Meteor. Soc., 93(9), 1401-1415.
Zanis, P., Douvis, C., Kapsomenakis, I., Kioutsioukis, I., Melas, D. and Pal, J. S., 2009, A sensitivity study of the Regional Climate Model (RegCM3) to the convective scheme with emphasis in central eastern and southeastern Europe, Theor. Appl. Climatol., 97(3-4), 327-337.