Comparison of Multi-site and Single-site Daily Precipitation and Temperature Extremes Downscaling (Case Study: Southern Coast of the Caspian Sea)


Assistant Professor, Department of Geography, University of Guilan, Rasht, Iran


To characterize the linkage between large-scale climate conditions and local climate variability, statistical downscaling techniques have been frequently used in climate-related studies. Different single-site and multi-site approaches to downscaling methods are applied in this regard. Most of the studies, however, have been mainly dealing with downscaling of climatic processes for a specific site or watershed average, but few studies are concerned with the multi-sites downscaling techniques because of the complexity in accurately describing both observed at-site temporal persistence and spatial dependence between different variables and locations (Khalili et al. 2013; Chen et al., 2017).
In this study, in order to comparison of multi-site and single-site daily precipitation and temperature extremes downscaling, two methods of Single-site Quintile Mapping (SSQ) and multi-site Modular Expanded Downscaling (ModExDs) (Cannon, 2013) were applied to a set of 5 synoptic stations located within Southern Coast of the Caspian Sea, Iran. The SSQ downscaling technique is based on application of the quantile mapping bias correction step from the Bias Correction Spatial Disaggregation (BCSD; Wood et al. 2002) downscaling algorithm directly to daily GCM data, i.e., without spatial and temporal disaggregation (Bürger et al. 2013). In this study, quantile mapping algorithm with delta method extrapolation for nonlinear bias correction is applied. Expanded Downscaling (XDS) is a perfect prognosis technique which maps large-scale atmospheric fields to local station data. The XDS method is based on defining a multivariate linear regression between predictors and predictands, extended by the side condition that the local co-variability between the variables and stations is preserved (Sunyer et al.). The ModExDs, as a modular of XDS which is implemented in R by Cannon (2013), is performed here.
The predictands include daily time series of precipitation and temperature extremes for the 1961-2013 period that leads to create a training set consisting of the first 30 years data, and a test set consisting of the remaining observations. Same variables of the NCEP/NCAR (National Centers for Environmental Prediction/National Centre for Atmospheric Research) reanalysis dataset were considered as climate predictors. Missing values of observed data are filled in by using the sequential k-nearest neighbor imputation method (Kim and Yi 2008) and homogeneity tests, of the R packages RHtestsV3 (Wang and Feng 2010) and RHtests_dlyPrcp (Wang et al. 2010), based on penalized maximal t and F tests (Wang et al. 2007; Wang 2008b), are applied both before and after infilling to assess infilling performance.
The methods sensitivity to large-scale anomalies and their skill in replication of the observation data distribution during the validation period (1991-2013) are tested, according to the 27 Climate Extremes Indices (CLIMDEX), using Pearson correlation and Kolmogorov–Smirnov (KS) tests, respectively. Combined tests are used to assess overall model performances.
The results showed that the multi-site method of ModExDs was able to pass 66.7, 48.9 and 33.3 percent and the single-site method of SSQ, passed 63, 48 and 29.6 percent of the Kolmogorov–Smirnov (KS), the Pearson correlation and the combined tests respectively. Therefore, both methods performed well in terms of temperature and precipitation downscaling. However, multi-site method performed better than single-site overlay.
Correlation tests were passed less frequently than KS tests. Both methods downscaled temperature indices better than precipitation indices. According to the Tables 3, 4 and 5, some indices, notably FD, GSL, TN10p, TN90p, TR and DTR, were passed correlation test successfully. Most of the indices related to the precipitation, especially, Rx5day and R10 were not successfully simulated by any of the methods in the region. Model performance varied widely across the study region. Methods performance, however, were better in the Anzali station regarding to the test 1 (corr). More indices were able to pass the test 2 (KS) throughout the region. However, indices such as DTR, FD, TN10p, TN90p, TNN, were not successfully downscaled or appeared to be fairly weak in all stations except for Gorgan in this regard. The indices of GSL and TX90p could pass the combined test throughout the study area. As mentioned before, methods performance varied across the region. So that the methods performed well in Gorgan station, while both performed worse in Rasht station.


Main Subjects

اوجی، ر.، 1392، تحلیل عدم قطعیت روش‌های تک‌ایستگاهی و چندایستگاهی در ریزگردانی مقادیر حدی دما و بارش غرب میانی ایران، رساله دکتری، دانشگاه تربیت مدرس.
جعفرزاده، ا.، خاشعی، ع. و شهیدی، ع.، 1395، ارزیابی دو روش ریز مقیاس نمایی آماری LARS-WG و SDSM در برآورد تغییرات پارامترهای اقلیمی (مطالعه موردی:دشت بیرجند). مجله پژوهش‎های حفاظت آب و خاک، دوره 23، شماره 4، صفحه 309-322.
دهقانی پور، ا. ح.، حسن‎زاده، م. ج.، عطاری، ج. و عراقی‎نژاد، ش.، 1390، ارزیابی توانمندی مدل SDSM در ریز مقیاس نمایی بارش، دما و تبخیر) مطالعه موردی: ایستگاه سینوپتیک تبریز (یازدهمین سمینار سراسری آبیاری و کاهش تبخیر، کرمان، دانشگاه شهید باهنر).
رضائی، م.، نهتانی، م.، مقدم‌نیا، ع.، جان‎آبکار، ع. و رضائی، م.، 1394، مقایسه روشهای شبکه‌ی عصبی مصنوعی و SDSM در ریزمقیاس کردن اندازه‌ی بارش سالانه‌ی شبیه‌سازی شده با HadCM3 (مطالعه‌ی موردی: کرمان، راور و رابر)، مجله مهندسی منابع آب، دوره 8، شماره 24، صفحه 25-40.
سبحانی، ب.، اصلاحی، م. و بابائیان، ا.، 1394، کارایی الگوهای ریزمقیاس نمایی آماری SDSM و LARS-WG در شبیه‌سازی متغیرهای هواشناسی در حوضۀ آبریز دریاچۀ ارومیه، پژوهشهای جغرافیای طبیعی، دوره 47، شماره 4، صفحه 499-516.
فرج‎زاده، م.، اوجی، ر.، قویدل‎رحیمی، ی. و مساح‎بوانی ع.، 1396، ارزیابی ریزگردانی تک‌ایستگاهی و چندایستگاهی مدل آماری اس‌دی‌اس‌ام با استفاده از شاخص‌های حدی دما و بارش (مطالعه موردی: غرب میانی ایران)، فیزیک زمین و فضا، دوره 43، شماره 1، 193-208.
قرمزچشمه، ب.، رسولی، ع. ا.، رضائی‎بنفشه، م.، مساح‎بوانی، ع. ر. و خورشیددوست، ع. م.، 1393، بررسی اثر عوامل مورفو-اقلیمی بر دقت ریزمقیاس گردانی مدل SDSM ، نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز، جلد ششم، شماره 2، 155-164.
کوهی، م.، موسوی بایگی، م.، فرید حسینی، ع. ر.، ثنایی‎نژاد، ح. و جباری نوقابی، ه.، 1391، ریزمقیاس نمایی آماری و ارایه سناریوهای آتی رویدادهای حدی بارش درحوضه کشف رود، نشریه پژوهشهای اقلیم شناسی، سال سوم، شماره 12، 35-53.
Bürger, G., 1996, Expanded downscaling for generating local weather scenarios. Clim. Res., 7, 111–128.
Bürger, G. and Chen, Y., 2005, Regression-based downscaling of spatial variability for hydrologic applications, J. Hydrol., 311, 299–317, DOI: 10.1016/j.jhydrol.2005.01.025.
Bürger, G., Murdock, T. Q., Werner, A. T., Sobie, S. R. and Cannon, A. J., 2012, Downscaling Extremes—An Intercomparison of Multiple Statistical Methods for Present Climate, J. Clim., 25, 4366–4388, DOI: 10.1175/JCLI-D-11-00408.1.
Bürger, G., Reusser, D. and Kneis, D., 2009, Early flood warnings from empirical (expanded) downscaling of the full ECMWF Ensemble Prediction System, Water Resour. Res., 45, W10443, DOI: 10. 1029/ 2009 WR 007779.
Bürger, G., Sobie, S. R., Cannon, A. J., Werner, A. T. and Murdock, T. Q., 2013, Downscaling Extremes: An Intercomparison of Multiple Methods for Future Climate, J. Clim., 26, 3429–3449, DOI:10.1175/ JCLI-D- 12-00249. 1.
Cannon, A. J., 2013, ModExDs, Pacific Climate Impact Consortium.
Chen, J., Chen, H. and Guo, S., 2017, Multi-site precipitation downscaling using a stochastic weather generator, Clim Dyn, DOI: 10.1007/ s00382-017-3731-9.
Dobler, C., Bürger, G. and Stötter, J., 2012, Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed, J. Hydrol., 460–461, 29–39, DOI:10.1016/j.jhydrol.2012.06.027.
Farajzadeh, M., Oji, R., Cannon, A. J., Ghavidel Y. and Massah Bavani, A., 2015, An evaluation of single-site statistical downscaling techniques in terms of indices of climate extremes for the Midwest of Iran, Theoretical and Applied Climatology 120, 377-390, DOI: 10.1007/s00704-014-1157-4.
Haddad, Z. S. and Rosenfeld, D., 1997, Optimality of Z-R Relationships, Q. J. R. Meteorol Soc., 123, 1283-1293.
Hamlet, A. F., Salathe, E. P. and Carrasco, P., 2010, Statistical downscaling techniques for global climate model simulations of temperature and precipitation with application to water resources planning studies.
Harpham, C. and Wilby, R. L., 2005, Multi-site downscaling of heavy daily precipitation occurrence and amounts. J. Hydrol 312:235–255.
Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L. and Goodess, C. M., 2006, Downscaling heavy precipitation over the UK: a comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology, 26, 1397-1415.
Kalnay, E, Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, D., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R. and Joseph, D., 1996, The NCEP/NCAR 40 year Reanalysis project, Bulletin of the American Meteorological Society 77, 437–471.
Khalili, M., Brissette, F. and Leconte, R., 2011, Effectiveness of Multi-site Weather Generator for Hydrological Modeling, American Water Resources Association, Journal of the American Water Resources Association, 47(2), 303-314.
Khalili, M. and Nguyen, V. T. V., 2016, An efficient statistical approach to multi-site downscaling of daily precipitation series in the context of climate change, Climate Dynamics, DOI: 10.1007/s00382-016-3443-6.
Khalili, M., Nguyen, V. T. V. and Gachon, P., 2013, A statistical approach to multi-site multivariate downscaling of daily extreme temperature series, International Journal of Climatology 33(1): 15-32, DOI: 10.1002/ joc. 3402.
Kim, K. Y. and Yi, G. S., 2008, Sequential KNN imputation method. R package version 1.0.1. CSBio lab., Information and Communications University,
Maraun, D., 2013, Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue, Journal of Climate, DOI: 10.1175/JCLI-D-12-00821.1.
Michelangeli, P. A, Vrac, M. and Loukos, H., 2009, Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys Res Lett 36:L11708. doi: 10.1029/2009GL038401.
Panofsky, H. A. and Brier, G. W., 1958, Some Applica-tions of statistics to meteorology, Philadelphia: the Pennsylvania State University.
Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Hanel, M., Kriaučiūnienė, J., Loukas, A., Osuch, M. and Yücel, I., 2015, Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe, Hydrol. Earth Syst. Sci., 19, 1827-1847, DOI: 10.5194/hess-19-1827-2015.
Vandal, T., Kodra, E. and Ganguly, A. R., 2017, Intercomparison of Machine Learning Methods for Statistical Downscaling: The Case of Daily and Extreme Precipitation, arXiv:1702.04018.
Wang, X. L., 2008, Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. J Atmos Oceanic Tech 25:368–384. DOI: 10.1175/2007/JTECHA982.1.
Wang, X. L., Chen, H., Wu, Y., Feng, Y. and Pu, Q., 2010, New techniques for the detection and adjustment of shifts in daily precipitation data series. J App Meteorol Climatol 49:2416–2436. DOI: http:// dx.doi. org/ 10.1175 /2010JAMC2376.1
Wang, X. L. and Feng, Y., 2010, RHtestsV3 user manual. Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, ON, Canada.
Wang, X. L., Wen, Q. H. and Wu, Y., 2007, Penalized maximal t test for detecting undocumented mean change in climate data series. J App Meteorol Climatol 46:916–931. DOI: 10.1175/JAM2504.1.
Wood, A., Maurer, E., Kumar, A. and Lettenmaier, D. P., 2002, Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res 107:4429, doi:10.1029/2001JD000659.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Klein Tank, A., Peterson, T. C., Trewin, B., Zwiers, F. W., 2011, Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change 2:851–870. doi:10.1002/wcc.147.