Fluid replacement modeling in Ilam Formation in one of the southwest Iranian oil reservoirs

Document Type : Research Article


1 Ph.D. Student, Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor, Department of Petroleum Engineering, Amirkabir University of Technology, Tehran. Iran

4 Senior Reservoir Geophysicist, Exploration Directorate, National Iranian Oil Company (NIOC), Tehran


Seismic technologies have been recently evolved into a central position in reservoir characterization and monitoring with the recent improvements and its cost efficiency. In this regards rock physics play an essential role by connecting seismic data to the presence of in-situ hydrocarbons. Modeling the effects of pore fluids on rock velocity and density is an essential part which normally is used to detect the influence of pore fluids on seismic signature. In recent years, one of the most important developments in rock physics has been the fast progress toward quantifying the relations between geologic processes and geophysical signatures. This quantification is normally done through application of different types of rock physics models: theoretical, empirical and hybrid models. However, fluid substitution methods make it possible to predict the elastic response of a rock saturated with one type of fluid from the elastic response of the same rock saturated with another fluid. This infers that seismic wave velocity could be predicted in geological formations for any possible hydrocarbon signature based on the measured velocities in the counterpart water-saturated formations. Therefore, fluid substitution is an important part of any seismic rock physics analysis (e.g., amplitude versus offset and time lapse studies), and can provides an efficient tool for fluid identification and quantification in a given reservoir. Fluid substitution commonly performed by using Gassmann’s equation which has already being discussed frequently. In general, Gassmann applicability is questionable in carbonates as it can under-predict, over- predict or even correctly predict seismic velocity changes by changing pore fluids. This is normally attributed to the violation of some of the Gassmann assumptions like their pore space connectivity in carbonates. The goal of this study is to perform fluid substitution and seismic modelling of one of the Iranian carbonate oil field to investigate validity of Xu and Payne (2009) for the carbonate field. This model generally emphasizes the behavior of rocks related to different pore types. Fluid substitution results are then compared and verified with the laboratory measurements of core sample taken from the same reservoir intervals. The final output of fluid substitution is saturated bulk modulus, shear modulus and density for either of the defined saturation scenarios. Our results show that Xu and Payne (2009) can be used on the studied reservoir. Also, the obtained results were confirmed using other source of information like ultrasonic measurements. Furthermore, this model was used to model frame bulk modulus as an input into the fluid substitution purposes. The results of the fluid substitution confirm the applicability of the introduced approach to discriminate different fluid responses in this field.


Main Subjects

شریفی، ج. و سکوتی دیارجان م. ر.، 1394، مطالعه موردی انجام آزمایش‌های آلتراسونیک در فشار مخزن و ارایه یک مدل فیزیک سنگ، سی‌و‌چهارمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، 3 الی 5 اسفند، تهران، ایران.
شریفی، ج.، میرزاخانیان، م.، صابری، م.ر. و سکوتی دیارجان، م.ر.، 1395، مدل‌سازی جانشینی سیال در ارتباط با پاسخ AVO در یک مخزن کربناته، هفدهمین کنفرانس ژئوفیزیک ایران، تهران، انجمن ژئوفیزیک ایران.
مدیریت اکتشاف شرکت ملی نفت ایران، 1393، گزارش تکمیلی چاه B-01، تهران، ایران.
Adam, L., Batzle, M. and Brevik, I., 2006, Gassmann's Fluid Substitution and Shear Modulus Variability in Carbonates at Laboratory Seismic and Ultrasonic Frequencies, Geophysics, 71(6). F173–F183.
Assefa, S., McCann, C. and Sothcott J., 2003, Velocities of Compressional and shear waves in limestones. Geophysical Prospecting, 51,1-13.
Avseth, P., Mukerji, T. and Mavko, G., 2005, Quantitative seismic interpretation: Cambridge University Press.
Batzle, M. and Wang, Z., 1992, Seismic properties of fluids: Geophysics, 57, 1396-1408.
Biot, M. A., 1956, Theory of propagation of elastic waves in fluid-saturated porous solid low frequency range. Journal of Acoustical Society of America, 28,168-178.
Castagna, J. P., Batzle, M. L. and Eastwood, R.L., 1985, Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 571-581.
Dou, Q., Sun Y. and Sullivan, C., 2011, Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas, Journal of Applied Geophysics 74, 8–18
Dvorkin, J. and Nur, A., 1993, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58, no. 4, 524-533.
Feng, Q., Jiang, L., Liub, M., Wand, H., Chene, L. and Xiaod, W., 2014, Fluid substitution in carbonate rocks based on the Gassmann equation and Eshelby–Walsh theory, Journal of Applied Geophysics Volume 106, 60–66.
Gardner, G. H. F., Gardner, L. W. and Gregory, A. R., 1974, Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780.
Gassmann, F., 1951, Uber die Elastizitat poroser Medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1-23.
Hill, R., 1952, The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. London Ser. A, 65, 349-354.
Krief, M., Garat, J., Stellingwerff, J. and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves, The Log Analyst, Nov-Dec, 355-369.
Kumar D., 2006, A Tutorial on Gassmann Fluid Substitution: Formulation, Algorithm and Matlab Code, Chevron Energy Technology Company, Geohorizons, 4, 4-12.
Kuster, G. T. and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media, Part I: Theoretical formulations. Geophysics, 39, 587–606.
Lucia F. J., 1999, Carbonate Reservoir Characterization. New York, Springer-Verlag.
Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The rock physics handbook – Tools for seismic analysis in porous media, Cambridge University Press.
Motiei, H., 1993, Stratigraphy of Zagros. Geological Survey of Iran. Tehran.
Paula, O. B., Pervukhina, M. and Gurevich, B., 2010, Testing Gassmann fluid substitution in carbonates: sonic log versus ultrasonic core measurements. SEG Expanded Abstracts.
Russell, B. R., Hedlin, K., Hilterman, F. J. and Lines, L. R., 2003, Fluid-property discrimination with AVO: A Biot- Gassmann perspective, Geophysics, 68, 29-39.
Saberi, M. R., 2014, A Rock Physics Model for Unconventional Reservoirs Characterization: Wolfcamp Shale Example, EAGE/FESM Joint Regional Conference Petrophysics Meets Geoscience 17-18 February Kuala Lumpur, Malaysia.
Sayers C. M., 2008, The elastic properties of carbonates. The Leading Edge, 27, 1020–1024.
Sharifi, J., Mirzakhanian, M., Javaherian, A., Saberi, M. R. and Hafezi Moqadas, N, 2017, An investigation on the relationship between static and dynamic bulk modulus on an Iranian oilfield, 79th EAGE Conference & Exhibition, Paris, France.
Sharifi, J., Mirzakhanian, M., Saberi, M. R., Moradi, M. and Sharifi, M., 2018, Quantification of Pore Type System in Carbonate Rocks for RockPhysics Modelling, 80th EAGE Conference & Exhibition, Copenhagen, Denmark.
Sodagar, M. and Lawton, D. C. T., 2011, Seismic modeling of CO2 fluid substitution for the Heartland Area Red water CO2 Storage Project (HARP), Alberta, Canada, Energy Procedia, 4, 3338–3345
Songa, Y., Hua, H. and Rudnickib, J. W., 2016, Shear properties of heterogeneous fluid-filled porous media with spherical inclusions, International Journal of Solids and Structures, 83,154–168.
Verwer, K., Braaksma, H. and Kenter A. M. J., 2008, Case History Acoustic properties of carbonates: Effects of rock texture and implications for fluid substitution, Geophysics, 73, no. 2. B51–B65.
White, R. E., Simm, R. and Xu, S., 1998, Well tie, fluid substitution and AVO modelling: A North Sea example. Geophys. Prosp., 46, 323-346.
Winkler K. W., 1986, Estimates of velocity dispersion between seismic and ultrasonic frequencies. Geophysics, 51, no 1, 183-189.
Wood, J., 2013, Water distribution in the Montney tight gas play of the western Canadian sedimentary basin: significance for resource evaluation. SPE Reservoir Evaluation & Engineering, 290-302.
Wyllie, M. R. J., Gregory, A. R. and Gardner L. W., 1956, Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41-70.
Xu, S. and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks. The Leading Edge, 28, 66-74.
Xu, S. and White, R. E., 1995, A new velocity model for clay-sand mixtures. Geophysical Prospecting, 43, 91-118.
Zhao, L., Nasser, M. and Han, D., 2013, Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs, Geophysical Prospecting, 61, 827–841.