ایرانیمهر، م. و ریاحی، م. ع.، 1393، تضعیف نوفه تصادفی با تبدیل موجک گسسته ضریب اتساع گویا، مجله ژئوفیزیک ایران، دوره 8، شماره 3، 25-35.
روشندل کاهو، ا. و نجاتی کلاته، ع.، 1389، تضعیف نوفههای اتفاقی در دادههای لرزهای با استفاده از تجزیة مد تجربی، مجله فیزیک زمین و فضا، 9، 1390، صفحه 61-68.
شکفته زوارم، م.، روشندل کاهو، ا. و گرایلو، ه.، 1394، تضعیف نوفههای تصادفی در دادههای لرزهای بازتابی با استفاده از فیلتر انتشار ناهمسانگرد غیرخطی تانسوری، نشریه پژوهشهای ژئوفیزیک کاربردی، دوره1شماره2، 105-118.
Aiswarya, K. and Jayaraj, V., 2014, Image Denoising Based On Symmetrical Fractional Overcomplete Wavelet Transform, Unique Journal of Engineering and Advanced Sciences, Vol. 02, no. 1, 101-109.
Askari, R. and Siahkoohi, H. R., 2008, Ground roll attenuation using the S and x-f-k transforms, Geophysical Prospecting, 56, 105-114.
Auscher, P., 1992, Wavelet bases for L2(R) with rational dilation factor, Wavelets and Their Applications. Jones and Barlett,439-451.
Bagheri, M. and Riahi, M. A., 2016, Seismic data random noise attenuation using DBM filtering, Bollettino di Geofisica Teorica ed Applicata Vol. 57, No. 1, 1-11.
Barnes, A. E., 1993, Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data, Geophysics, Vol. 58, No. 3, P. 419-428.
Baussard, A., Nicolier, F. and Truchetet. F., 2004, Rational multiresolution analysis and fast wavelet transform: application to wavelet shrinkage denoising, Signal Processing, Vol., 84, No.10,1735–1747.
Bayram, I. and Selesnick, I., 2009, Frequency-domain Design of Overcomplete Rational-Dilation Wavelet Transforms, IEEE Trans. Signal Process, Vol. 57, No. 8, 2957–2972.
Bayram, I. and Selesnick, I., 2011, A Dual-Tree Rational-Dilation Complex Wavelet Transform, IEEE Transactions on Signal Processing, Vol. 59, No.12, 6251 – 6256.
Borhani, M. and Sedghi, V., 2004, 2-D Dual-Tree Wavelet Based Local Adaptive Image Denoising, The 12nd Iranian Conference on Electrical Engineering, P. 12_017
Canales, L., 1984, Random noise reduction: Presented at the 54th Annual International Meeting, SEG. 525–527.
Chase, M. K., 1992, Random noise reduction by 3‐D spatial prediction filtering. SEG Technical Program Expanded Abstracts 1992: pp. 1152-1153
Donoho, D. L. and Johnstone, I. M., 1994, Ideal spatial adaptation via wavelet shrinkage: Biometrika, Vol. 81, P. 425–455.
Fugal, L. D., 2009, Conceptual Wavelets in Digital Signal Processing, Space & Signals Technologies LLC.
Goudarzi, A. and Riahi, M. A., 2013, TQWT and WDGA-Innovative methods for ground roll attenuation, J. Geophys. Eng., Vol 10, No. 6, P. 065007.
Irani Mehr, M. and Abedi, M. M., 2017, Random Noise Attenuation Using Variable WQ-factor Wavelet Transform, 79th EAGE Conference and Exhibition, Paris.
Johnstone, I. M. and Silverman, B. W., 1997, Wavelet threshold estimators for data with correlated noise: J. R. Statist. Soc. B, Vol. 59, P. 319– 51.
Kingsbury, N., 2002, Complex wavelets for shift invariant analysis and filtering of signals, Applied and Computational Harmonic Analysis, Vol. 10, No.3, P. 234-253.
Lari, H. and Gholami, A., 2014, Curvelet-TV regularized Bregman iteration for seismic random noise attenuation, Journal of Applied Geophysics, Vol 109, no. 1: 233-241.
Mallat, S., 2008, A Wavelet Tour of Signal Processing, Academic Press, 3rd edition.
Merklin, L. and Levchenko, O., 2005, Seismic Engineering Survey in the Caspian Sea for Oil and Gas Companies, 2nd Workshop “Seabed Acoustics” in Rostock-Warnemünde.
Meyer, Y., 1992, Wavelets and Operators, Cambridge: Cambridge University Press.
Sheriff, R. E. and Geldart, L. P., 1995, Exploration seismology, 2nd ed, Cambridge university press.
Selesnick, I., 2001, Hilbert transform pairs of wavelet bases, IEEE Signal Processing Letters, Volume 8, No.6, P.170-173.
Selesnick I., 2004, The Double-Density Dual-Tree DWT, IEEE Transactions on Signal Processing, Volume: 52, Issue: 5. P. 1304-1314.
Yilmaz, Ö., 2001, Seismic Data Analysis, Society of Exploration Geophysicists, second edition.