Study of vertical displacement caused by 2019 Turkmanchay earthquake based on InSAR method

Document Type : Research Article

Authors

1 Assistant Professor, Department of Geography, Faculty of Economics, Management & Social sciences, Shiraz University, Shiraz, Iran

2 Ph.D. Student, Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran

3 M.Sc. Graduated, Department of Physical Geography, Faculty of Geography, Isfahan University, Isfahan, Iran

4 Ph.D. Student, Department of Physical Geography, Faculty of Geo Science, Shahid Beheshti University, Tehran, Iran

Abstract

Large earthquakes are one of the most devastating natural disasters, often resulting in extensive casualties and high mortality, which are considered to be the most significant effects of earthquakes. But earthquakes, in addition to their tangible effects, also have intangible effects that may have long-term effects. In fact, high-power earthquakes cause vertical displacement of the earth by subsidence and uplift, which can adversely affect the residential areas and facilities as well as geomorphological landforms. One of the most recent earthquakes in Iran was the 5.9 earthquake on 2019/11/07 in the Turkmanchay, which caused considerable damage to the settlements in the region and was accompanied by significant vertical displacement. Vertical displacement of the area, in addition to its effects on habitat areas, has a significant impact on groundwater fluctuation, causing problems in groundwater calculations and slope ruptures. For this reason, calculating the vertical displacement rate can be very important. Different methods are used to evaluate the vertical displacement of each area that the radar interferometry is among the best methods. Therefore, the purpose of this study is to evaluate the vertical displacement caused by the Turkmanchay earthquake on surrounding cities using the radar interferometry method.
This research is based on analytical-descriptive and software methods. Research data include Sentinel-1 radar images, DEM 30m, and statistical information related to the Turkmanchay earthquake. The software used in the research also includes SNAP (pre-processing and mapping displacement rates), Snaphu (Phase Unwrapping), and ArcGIS (preparing output maps). In this research, the radar interferometry method is used to assess the displacement rate of the study area. Radar interferometry is one of the most powerful tools for monitoring the subsidence phenomenon. This method, by comparing the phases of two radar images of the region taken at two different times, can determine the changes in the surface of the earth at that time interval. The phase taken from a feature on the Earth's surface is proportional to its distance to the radar sensor. Therefore, the change in this distance affects the measured phase. In this research, Sentinel-1 images are used for radar interferometry.
The Turkmanchay earthquake occurred on 2019/11/07 near the city of Turkmanchay in Azerbaijan province. The magnitude of the earthquake was reported by various authorities from 5.8 to 6 and its depths up to 10 km. The earthquake also had 610 aftershocks, with the largest one being 4.8, and the closest cities to its hypocenter are Turkmanchay, Mianeh, Turk, Sarab, and Hashtrud. The Turkmanchay earthquake has had many tangible and intangible effects. Due to its magnitude, the earthquake has caused a lot of damage to residential areas including rural areas. One of the tangible effects of the Turkmanchay earthquake was the destruction of residential areas and facilities. The earthquake also caused considerable vertical displacement in the region, given the final map, with a range of 13 to 96 mm. Evaluation of the displacement map of the region indicates that most displacements occurred at the margin of the earthquake hypocenter and, in a general trend, the western areas of the area have experienced subsidence, with a decreasing trend toward the eastern regions and some areas were experiencing uplift.
The Turkmanchay earthquake has left many tangible and intangible effects. Among the tangible effects were the destruction of residential areas, with approximately 370 home experienced destruction of between 5 and 100 percent. Also, according to the statistics, 5 people were killed and more than 300 were injured. Among its intangible effects has been the vertical displacement of the area. The results of the evaluation of vertical displacement in urban areas indicate that the city of Sarab with a 41 mm subsidence has the highest vertical displacement. The cities of Turkmanchay, Mianeh, Hashtrud, Turk, Aghkand, and Nair experienced subsidence rates of 30, 3, 28, 18, 14 and 32 mm respectively. In addition to residential areas, geomorphological units have also witnessed a displacement, which can be very important. One of the units where the vertical displacement is very important is the lowland area where the final map shows that the Turkmanchay, Sarab, Hashtrud and Nair plains have been subsided and the Mianeh plain has been uplifted. The vertical displacement in the plains of the area can be effective in fluctuating groundwater and making it difficult to calculate various parameters including the groundwater level drop. Another effect of vertical displacement is the impact on slopes. Given that much of the area is covered by the mountain unit, this displacement can  intensify slope movements in the coming years.

Keywords

Main Subjects


امیدوار، ک.، ۱۳۹۰، مخاطرات طبیعی، انتشارات دانشگاه یزد، یزد.
پژوهشگاهی بین­المللی زلزله­شناسی و مهندسی زلزله (۱۳۹۸)، گزارش اولیه زمین­لرزه ۱۷ آبانماه ۱۳۹۸ ترکمانچای (سراب) با بزرگای گشتاوری ۹/۵.
رکنی، ج.، حسین­زاده، س.، لشکری­پور، غ. و ولایتی، س.، ۱۳۹۵، بررسی فرونشست زمین، چشم اندازه­ها و تحولات ژئومورفولوژی ناشی از آن در دشت­های تراکمی (مطالعه موردی: دشت نیشابور)، م فصلنامه مطالعات جغرافیایی مناطق خشک،۲۴، ۳۸-۲۱.
روزبان، ع.، اسماعیلی، ع. و معتق، م.، ۱۳۹۵، بررسی فرونشست زمین با استفاده از روش تداخل‌سنجی تفاضلی راداری (DInSAR) و با به‌کارگیری تصاویر سنجنده SENTINEL، دومین کنفرانس ملی مهندسی فناوری اطلاعات مکانی، دانشگاه خواجه نصیرالدین طوسی.
زارع، م.، کامران­زاد، ف.، ۱۳۹۳، پراکندگی لرزه­خیزی در ایران، نشریه تحلیل فضایی، م مخاطرات محیطی، ۴، ۵۸-۳۹.
زارع­کمالی، م.، الحسینی­المدرسی، س. و نقدی، ک.، ۱۳۹۶، مقایسه میزان جابه‌جایی عمودی زمین با استفاده از الگوریتم SBAS در باندهای راداری X و C (مطالعه موردی: اراضی تهران)، م سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 28، ۱۲۰-۱۰۴.
زارعی، ی.، استعلاجی، ع.، ۱۳۹۵، تبین اثرات زلزله بر ساختمان­های مسکونی مناطق روستایی بخش شنبه و طسوج، م جغرافیا (برنامه­ریزی منطقه­ای)، 24، ۵۲-۳۳.
شریفی کیا، م.، 13۹1، تعیین میزان و دامنه فرونشست زمین به‌کمک روش تداخل‌سنجی راداری (D-InSAR) در دشت نوق-بهرمان، م برنامه­ریزی و آمایش فضا، 77، ۷۷-۵۵.
شکرزاده، س.، وثوقی، ب. و آمیخ­پی، م.،۱۳۹۳، مطالعه میدان تغییر شکل بعد لرزه­ای زمین‌لرزه ۱۳۸۲ بم با استفاده از تکنیک پراکنش کننده­های دائمی، م. علوم زمین، ۹۴، ۲۱۹-۲۰۹.
علایی­طالقانی، م.، 138۸، ژئومورفولوژی ایران، چاپ پنجم، انتشارات قومس، تهران.
مرکز لرزه‌نگاری کشور.، ۱۳۹۸، گزارش زمین‌لرزه ۹/۵ مورخ ۱۷ آبان ۱۳۹۸، مؤسسه ژئوفیزیک.
مقصودی، ی.، امانی، ر. و احمدی، ح.، ۱۳۹۸، بررسی رفتار فرونشست زمین در منطقه غرب تهران با استفاده از تصاویر سنجنده سنتینل ۱ و تکنیک تداخل­سنجی راداری مبتنی بر پراکنش­گرهای دائمی، م تحقیقات منابع آب ایران، 61، ۳۱۳-۲۹۹.
مهرابی، ع.، پورخسروانی، م.، ۱۳۹۷، اندازه­گیری میزان جابه‌جایی سطح زمین ناشی از زلزله ۱۳۸۳ داهوئیه (زرند) استان کرمان و شناسایی گسل عامل آن با استفاده از روش تداخل‌سنجی راداری، م پژوهش­های ژئومورفولوژی کمی، 25، ۷۳-۶۱.
وزارت کشور.، ۱۳۹۸، گزارش مربوط به خسارات زلزله ترکمانچای، استانداری آذربایجان‌شرقی.
Abir, I. A., Khan, S. D., Ghulam, A., Tariq, S. and Shah, M. T., 2015, Active tectonics of western Potwar Plateau–Salt Range, northern Pakistan from InSAR observations and seismic imaging. Remote Sensing of Environment, 168, 265-275.
Bateson, L., Cigna, F., Boon, D. and Sowter, A., 2015, The application of the Intermittent SBAS(ISBAS) InSAR method to the South Wales Coalfield, UK. International Journal of Applied Earth Observation and Geoinformation, 34, 249-257.
Bozzano, F., Esposito, C., Franchi, S., Mazzanti, P., Perissin, D. and Rocca, A, 2015, Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: the acque albule plain case study. Remote Sens. Environ. 168, 219–238.
Cigna, F., Novellino, A., Colm, J. and Sowter, A., 2014, Intermittent SBAS (ISBAS) InSAR with COSMO-SkyMed X-band high resolution SAR data for landslide inventory mapping in Piana degli Albanesi (Italy). In: SPIE Proceedings: SAR Image Analysis, Modeling, and Techniques XIV, Amsterdam, Netherlands, 22 Sep.
Daniel, R. C., Maisons, C., Carnec, S., Mouelic, L., King, C. and Hosford, S., 2003, Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement, Remote Sensing of Environment, 88, 468-478.
Du, Y., Feng, G., Peng, X. and Li, Z., 2017, Subsidence Evolution of the Leizhou Peninsula, China, Based on InSAR Observation from 1992 to 2010, Appl. Sci. 2017, 7, 466; doi:10.3390/app7050466.
Esa., 2019, https://step.esa.int/main/snap-user-day-10-september-2017.
Hanssen, R. F., 2001, Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht. Kluwer Academic Publishers.
Ho, D. T. D., Tran, C. Q., Nguyen, A. D. and Le, T. T., 2016, Measuring ground subsidence in Hanoi city by radar interferometry. Science and Technology Development Journal, 19 (2), 122-129.
Nguyen Hao, Q. and Takewaka, S., 2019, Detection of Land Subsidence in Nam Dinh Coast by Dinsar Analyses, International Conference on Asian and Pacific Coasts, 1287-1294.
Pan, S. T., Cheng, Y. Y. and Lin, C. H., 2019, Extrication time and earthquake-related mortality in the 2016 Taiwan earthquake, Journal of the Formosan Medical Association, 118(11), 1504-1514.
Zhao, Q., Ma, G., Wang, Q., Yang, T., Liu, M., Gao, W., Falabella, F., Mastro, P. and Pepe, A., 2019, Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area, ISPRS Journal of Photogrammetry and Remote Sensing, 154, 10-27.
http://step. esa.int/ main/ third-party- plugins-2/snaphu/