صفری، ع.، راموز، ص. و جمعهگی، ع.، 1393، بهبود مدلسازی محلی میدان گرانی بهروش تبدیل همجایی از راه چگالی پوسته، مدلهای ژئوپتانسیل جهانی و تلفیق مشاهدات ژئودتیک منطقه تحقیقاتی: پارس ساحلی، م. فیزیک زمین و فضا، 40(4)،. 83-98.
صفری، ع.، 1395، ژئودزی فیزیکی، دانشگاه تهران، چاپ سوم، شابک 9640362976-978.
Barzaghi, R., Borghi, A. and Sona, G., 2001, New Covariance Models for Local Applications of Collocation, in: IV Hotine-Marussi Symposium on Mathematical Geodesy, edited by: Benciolini, B., IAG Symposia, Springer, Berlin, Heidelberg, 122, 91–101, https:// doi.org/10.1007/978-3-642-56677-6_15.
Darbeheshti, N. and Featherstone, W. E., 2009, Non-stationary covariance function modelling in 2D least-squares collocation, J. Geod., 83, 495–508, https://doi.org/10.1007/ s00190-008-0267-0.
Featherstone, W., 1998, Do We Need a Gravimetric Geoid or a Model of the Australian Height Datum to Transform GPS Heights in Australia?, The Australian Surveyor 43 (4). Inpress.
Foroughi, I., Afrasteh, Y., Ramouz, S. and Safari, A., 2017, Local evaluation of Earth Gravitational Models, case study: Iran, Geodesy Cartogr. 43, 1–13, https://doi.org/10.3846/ 20296991.2017.1299839.
Forsberg, R., 1984, A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling, Report 355, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.
Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J. M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R., 2014, EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, https://doi.org/10.5880/icgem.2015.1.
Hatam C. Y., 2010, Etablissement des nouveaux reseaux multi-observations geodesiques et gravimetriques et determination du geoide en Iran. PhD Thesis. Geophysics, University Montpellier 2, Montpellier, France (in French).
Heydarizadeh Shali H., Ramouz S., Safari A. and Barzaghi R., 2020, Assessment of Tscherning-Rapp covariance in Earth gravity modeling using gravity gradient and GPS/leveling observations, European Geosciences Union General Assembly, Vienna, Austria, doi:10.5194/egusphere-egu2020-1059.
Heiskanen W.A. and Moritz H., 1967, Physical Geodesy. W.H. Freeman, San Francisco, CA.
Hirt C., 2011, Assessment of EGM2008 over Germany using accurate quasigeoid heights from vertical deflections, GCG05 and GPS/levelling. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 136(3), 138149.
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F. and Schuh, H., 2019, ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services and future plans.-Earth System Science Data, 11, pp. 647-674,DOI: http://doi.org/10.5194/essd-11-647-2019.
Keller, W., 2002, A Wavelet Solution to 1D Non-Stationary Collocation with Extension to the 2D Case, in: Gravity, Geoid and Geodynamics 2000, edited by: Sideris, M. G., IAG Symposia, Springer, Berlin, Heidelberg, 123, 79–84, https://doi.org/10.1007/978-3-662-04827-6_13.
Kiamehr, R., 2006, Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula: with Some Geodynamic Interpretations. PhD Thesis. Royal Institute of Technology, Stockholm, Sweden.
Kotsakis, C., 2007, Least-squares collocation with covariance-matching constraints, J. Geod., 81, 661–677, https://doi.org/10.1007/s00190-007-0133-5.
Moritz, H., 1980, Advanced Physical Geodesy, Herbert Wichmann Verlag, Karlsruhe.
Nahavandchi, H. and Soltanpour, A., 2005, Improved determination of heights using a conversion surface by combining gravimetric quasi/geoid and GPS-levelling height differences. Stud. Geophys. Geod., 50, 165180.
NASA, 2013, NASA Shuttle Radar Topography Mission Global 1 arc second, Data set, NASA LP DAAC, https://doi.org/10.5067/measures/srtm/srtmgl1.003.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K., 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 117, B04406, DOI:10.1029/2011JB 008916.
Ramouz, S., Afrasteh, Y., Reguzzoni, M., Safari, A. and Saadat, A., 2019, IRG2018: A regional geoid model in Iran using Least Squares Collocation, Studia Geophysica et Geodaetica, 63, 191–214, https://doi.org/10.1007/s11200-018-0116-4.
Ramouz, S., Reguzzoni M., Afrasteh, Y, Safari, A., 2020, Assessment of Local Covariance Estimation Through Least Squares Collocation Over Iran, Adv. Geosci., 50, 65-75, https://doi:10.5194/adgeo-50-65-2020.
Saadat, A., Safari, A. and Needell, D., 2018, IRG2016: RBF-based regional geoid model of Iran, Studia Geophysica et Geodaetica, 62, 380–407, https://doi.org/10.1007/s11200-016-0679-x.
Safari, A., Ardalan A. A. and Grafarend, E. W., 2005, A new ellipsoidal gravimetric, satellite altimetry and astronomic boundary value problem, a case study: The geoid of Iran. J. Geodyn., 39, 545568.
Sansò, F. and Sideris, M. G., 2013, Geoid Determination: Theory and Methods, Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/978-3-540-74700-0.
Tscherning, C. C., 1999, Construction of anisotropic covariance functions using sums of Riesz-representers, J. Geod., 73, 332–336, https://doi.org/10.1007/s001900050250.
Tscherning, C. C., 2015, Least-squares collocation. In: Grafarend E. (Ed.), Encyclopedia of Geodesy. Springer, Cham, Switzerland, DOI: 10.1007/978-3-319-02370-0_51-1.
Tscherning, C. C., Forsberg, R. and Knudsen, P., 1992, The GRAVSOFT package for geoid determination. Proceedings of the 1st Continental Workshop on the Geoid in Europe, Prague. Research Institute of Geodesy, Topography and Cartography, Prague, Czech Republic.
Tscherning, C. C. and Rapp, R., 1974, Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models, Report 208, Department of Geodetic Science, The Ohio State University, Columbus.
Yildiz, H., Forsberg, R., Ågren, J., Tscherning, C. C. and Sjöberg, L. E., 2012, Comparison of Remote Compute Restore and Least Squares Modification Stokes' Formula Techniques to Quasi-Geoid Determination over Auvergne Test Area, J. Geod. Sci., 2, 53–64, https://doi.org/10.2478/v10156-011-0024-9.