Determining the Elastic thickness of the lithosphere in The Zagros Mountains using the Admittance function

Document Type : Research Article


1 Ph.D. Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran

2 Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran


Zagros orogeny is one of the most active orogenic belts among the mountain ranges extending approximately 2000 kilometers from the Anatolian fault in eastern Turkey to the Minab fault in southern Iran. Concerning the importance of this region as well as the essential role of elastic thickness in controlling the rate of deformation under applied loads, determination of Te in Zagros Fold and Thrust belt has been conducted. The lithosphere's elastic thickness (Te) is a convenient measure of the flexural rigidity, which is defined as the resistance to bending under applied loads.
To determine the elastic thickness of the lithosphere, the spectral admittance function is applied. We applied the load deconvolution of the admittance function between free-air gravity and topography data for estimation of Te. The Free air anomalies with a five arc-minute resolution are utilized in this study.
In flexural isostatic studies, the gravity and topography data are compared with theoretical models to estimate several parameters of the lithosphere. In the simplest model, a plate has been flexed by a surface load, with the magnitude of the resulting deflection, which is governed by Te.
Using the random fractal surfaces as the initial surface and subsurface loads applying at lithosphere, the lithosphere is modeled, and the post flexural gravity and topography are determined. Based on these new fields, the predicted admittance function is determined. Finally, the best-fitting Te is one that minimized the misfit between the observed and predicted functions. Additionally, the weighted misfit by the jackknife error is applied to estimate the observed admittance.
The accuracy of the method is checked through synthetic modeling. Two fractal surfaces are used as the two initial surface and subsurface loads applied to the lithosphere. After calculating the corresponding gravity and topography data by the load deconvolution method, the observed and predicted admittance are estimated. The best-fitting Te will be obtained by minimizing the misfit between observed and predicted functions. After confirming the accuracy of the method in Te determination, the technique will be applied to the real data acquired from the NCC as follow.
We consider a three-layered crust during the lithosphere modeling on which the internal loading is applied on the middle crust. To model the lithosphere, the global CRUST 1.0 is applied by treating the lithosphere as a three-layer crust.
The 2D map of Te variations in the target area is depicted by utilizing the load deconvolution of the admittance function between free-air gravity and topography data. High-precision ground gravity data, which is more accurate than satellite data, allows us to detect more details on Te variations in the region.
Based on the obtained results, the estimated range of Te in the survey region can be considered low to intermediate. This predicted range is in good accordance with the area's geology background as it is regarded as a young, active orogeny system. Te range and hence the lithosphere's predicted strength to deformation is supported by the previous studies using different geophysical and seismological studies. The mean value of Te in the area is 37±2 km. The maximum amount is detected in the Sanandaj-Sirjan zone. The overall predicted trend of Te follows the geological background of the region. Additionally, the estimated trend for Te and the strength to the applied load and deformation is in good agreement with the previous geophysical and seismological studies conducted in the region.


Main Subjects

باقری آشنا، ز.، ابراهیم‌زاده اردستانی، و. و دهقانی، ع.، 1398، مطالعه ساختار پوسته و سنگ‌کره در زیر رشته کوه‌های زاگرس بر اساس مدل‌سازی داده‌های گرانی و ژئوئید، م. پژوهش‌های ژئوفیزیک کاربردی. 5(1)، 15-28.
کریمی زاده، س.، افسری، ن. و تقی‌زاده فرهمند، ف.، 1396، تصویر لرزه‌ای ساختار پوسته شمال غرب زاگرس (کرمانشاه و خرم‌آباد) با استفاده از امواج دورلرز، م. پژوهش‌های ژئوفیزیک کاربردی. 3(2)، 217-227
کهریزی، ا. و تقی زاده فرهمند، ف.، 1397، تأثیر بی‌هنجاری دمایی بر ضخامت منطقه انتقالی گوشته بالایی در شمال غرب زاگرس با استفاده از امواج دورلرز، م. پژوهش‌های ژئوفیزیک کاربردی، 4(1)، 43-54.
محمدی، ا. و رضاپور، م.، 1397، تغییرات ضخامت پوسته در مناطق برخوردی زاگرس و البرز با استفاده از روش تابع گیرندهP ، م. پژوهش‌های ژئوفیزیک کاربردی، 4(1)، 105-122
موسوی، ن.، ابینگ، ی. و ابراهیم‌زاده اردستانی، و.، 1396، تفسیر ساختار سنگ‎ کره و پوسته در منطقه زاگرس با استفاده از مدل‌سازی داده‎‌های ارتفاعی، ژئویید و میدان پتانسیل (گرانی و مغناطیس)، م. علوم زمین، 26(103)، 119-128.‎
Abbaszadeh, M., Sharifi, M. A. and Nikkhoo, M., 2013, A comparison of the estimated effective elastic thickness of the lithosphere using terrestrial and satellite-derived data in Iran. Acta Geophysica, 61(3), 638–648.
Afsari, N., Sodoudi, F., Farahmand, F. T. and Ghassemi, M. R., 2011, Crustal structure of northwest Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic PS converted phases. Journal of Seismology, 15(2), 341-353.
Alavi, M. J. T., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. 229(3-4), 211-238.
Berberian, M. J. T., 1995, Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3-4), 193-224.
Bird, P. J. T., 1978, Finite element modeling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics, 50(2-3), 307-336.
Bürgmann, R. and Dresen, G., 2008, Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annual Review of Earth and Planetary Sciences, 36.
Burov, E. and Diament, M., 1992, Flexure of the continental lithosphere with multilayered rheology. Geophysical Journal International, 109(2), 449-468.
Burov, E. and Diament, M., 1996, Isostasy, equivalent elastic thickness, and inelastic rheology of continents and oceans. Geology, 24(5), 419-422.
Chen, B., Liu, J., Chen, C., Du, J. and Sun, Y., 2015, Elastic thickness of the Himalayan–Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth and Planetary Science Letters, 409, 1-14. science/article/ pii/S0012821X14006669.
Dehghani, G. A. and Makris, J., 1984, The gravity field and crustal structure of Iran. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 215-229.
Eshagh, M., Tenzer, R. and Eshagh, M. 2020, Elastic thickness of the Iranian lithosphere from gravity and seismic data. Tectonophysics, 774, 228186. article/pii/S0040195119302938.
Ghalehnovi, S., Ardestani, V. E. and Pysklywec, R. N., 2020, Determination of elastic thickness of the lithosphere using gravity and topography data: a case study for the Golpayegan, Arak, and the Qom Blocks. Arabian Journal of Geosciences, 13(23), 1-12.
Hatzfeld, D. and Molnar, P., 2010, Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2).
Hatzfeld, D., Tatar, M., Priestley, K. and Ghafory-Ashtiany, M., 2003, Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophysical Journal International, 155(2), 403-410.
Jackson, J., Haines, J. and Holt, W., 1995, The accommodation of Arabia‐Eurasia plate convergence in Iran. Journal of Geophysical Research: Solid Earth, 100(B8), 15205-15219.
Jackson, J., McKenzie, D., Priestley, K. and Emmerson, B., 2008a, New views on the structure and rheology of the lithosphere. Journal of the Geological Society, 165(2), 453-465.
Jackson, J., McKenzie, D., Priestley, K. and Emmerson, B., 2008b, New views on the structure and rheology of the lithosphere. Journal of the Geological Society, 165(2), 453-465.
Jiménez-Munt, I., Fernàndez, M., Saura, E., Vergés, J. and Garcia-Castellanos, D., 2012, 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia—Eurasia collision (Iran). Geophysical Journal International, 190(3), 1311-1324.
Kirby, J. and Swain, C. J., 2014, The long‐wavelength admittance and effective elastic thickness of the Canadian Shield. Journal of Geophysical Research: Solid Earth, 119(6), 5187-5214.
Kirby, J. F., 2005, Which wavelet best reproduces the Fourier power spectrum? Computers & Geosciences, 31(7), 846-864.
Kirby, J. F. and Swain, C. J., 2004, Global and local isostatic coherence from the wavelet transform. Geophysical research letters, 31(24), n/a-n/a.
Kirby, J. F. and Swain, C. J., 2008, An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochemistry, Geophysics, Geosystems, 9(3). https://agupubs.
Kirby, J. F. and Swain, C. J., 2009, A reassessment of spectral Te estimation in continental interiors: The case of North America. Journal of Geophysical Research: Solid Earth, 114(B8), n/a-n/a. 2009JB006356.
Kirby, J. F. and Swain, C. J., 2011, Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Computers & Geosciences, 37(9), 1345-1354.
Kirby, J. F. and Swain, C. J., 2014, On the robustness of spectral methods that measure anisotropy in the effective elastic thickness. Geophysical Journal International, 199(1), 391-401. 199/1/391.abstract.
Laske, G., Masters, G., Ma, Z. and Pasyanos, M., 2013, Update on CRUST1. 0—A 1-degree global model of Earth’s crust. Paper presented at the Geophys. Res. Abstr.
Macario, A., Malinverno, A. and Haxby, W. F., 1995, On the robustness of elastic thickness estimates obtained using the coherence method. Journal of Geophysical Research: Solid Earth, 100(B8), 15163-15172. 95JB00980.
McKenzie, D., 2003, Estimating Te in the presence of internal loads. Journal of Geophysical Research: Solid Earth, 108(B9), n/a-n/a.
Molnar, P. and Lyon-Caen, H., 1988, Some simple physical aspects of the support, structure, and evolution of mountain belts. Processes in continental lithospheric deformation, 218, 179-207.
Mousavi, N. and Fullea, J., 2020, 3-D thermochemical structure of lithospheric mantle beneath the Iranian plateau and surrounding areas from geophysical–petrological modelling. Geophysical Journal International, 222(2), 1295-1315.
Mouthereau, F., Lacombe, O. and Vergés, J., 2012, Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532–535, 27-60.
Munk, W. H., Cartwright, D. E., 1966, Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society of London. Series A, Mathematical, 259(1105), 533-581.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L. J. L., 2008, Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3-4), 380-398.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M. and Péquegnat, C., 2010, Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological society, london, special publications, 330(1), 5-18.
Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J. and Mokhtari, M., 2006, Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran). Geophysical Journal International, 166(1), 227-237.
Peitgen, H. O. and Saupe, D., 1988, The science of fractal images: Springer-Verlag.
Pirouz, M., Avouac, J.-P., Hassanzadeh, J., Kirschvink, J. L. and Bahroudi, A., 2017, Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth & Planetary Science Letters, 477, 168-182.
Press, W. H., Teukolsky, S. A., Flannery, B. P. and Vetterling, W. T., 1992, Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific computing: Cambridge university press.
Priestley, K., McKenzie, D., Barron, J., Tatar, M. and Debayle, E. J. G., 2012, Geophysics, Geosystems. The Zagros core: deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 13(11).
Saura, E., Garcia‐Castellanos, D., Casciello, E., Parravano, V., Urruela, A. and Vergés, J. J. T., 2015, Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran‐Iraq). Tectonics, 34(3), 377-395.
Shad Manaman, N., Shomali, H. and Koyi, H., 2011, New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophysical Journal International, 184(10), 247-267.
Snyder, D. B. and Barazangi, M. J. T., 1986, Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics, 5(3), 361-373.
Stöcklin, J., 1968, Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7), 1229-1258.
Thomson, D. J., 1991, Jackknife error estimates for spectra, coherences, and transfer functions, Advances. Spectral Analysis and Array Processing, 58-113.
Tarantola, A. J. N. Y., 1987, Inverse Problem Theory Elsevier. New York.
Tesauro, M., Audet, P., Kaban, M. K., Bürgmann, R. and Cloetingh, S., 2012, The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry, Geophysics, Geosystems, 13(9), n/a-n/a.
Tunini, L., Jiménez-Munt, I., Fernandez, M., Vergés, J. and Villasenor, A., 2014, Lithospheric mantle heterogeneities beneath the Zagros Mountains and the Iranian Plateau: a petrological-geophysical study. Geophysical Journal International, 200(1), 596-614.
Watts, A. B., 2001, Isostasy and Flexure of the Lithosphere: Cambridge Univ Press.
Watts, A. B. and Burov, E. B., 2003, Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1–2), 113-131.
Zamani, A., Samiee, J. and Kirby, J. F., 2014, The effective elastic thickness of the lithosphere in the collision zone between Arabia and Eurasia in Iran. Journal of Geodynamics, 81, 30-40.
Zhu, L. and Kanamori, H., 2000, Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth 105(B2), 2969-2980.