Elemental analysis of air-full dust in World heritage city of Yazd by Laser Induced Breakdown Spectroscopy

Document Type : Research


1 M.Sc. Student, Department of Physics, Yazd University, Yazd, Iran

2 Assistant Professor, Department of Physics, Yazd University, Yazd, Iran


The dust and the environmental pollutions caused by dust storms are a serious environmental hazard, particularly in arid and semi-arid civilian regions in the world. Controlling and decreasing the harmful or undesirable effects of dust can be achieved by accurately identifying and analyzing dust samples. For this goal, various elemental analysis methods are commonly used for identifying and characterizing dust materials.
The City of Yazd (UNESCO Heritage Center) is located in Iran's central region. It is surrounded by many industrial, mineral sites, and deserts. The city's urban areas suffer air pollution due to seasonal wind, the lack of annual rainfall, and dust storms. Hence, the dust concentration reaches higher than of standard limits occasionally in this city. In this paper, a study to characterize and analyze the falling-dust in Yazd city is reported. Initially, the sampling procedure was conducted at five different locations for two months using marble dust collectors. The size distributions and morphology of dust samples were studied by Scanning Electron Microscopy (SEM), X-Ray Diffraction technique (XRD). Moreover, samples' elemental composition was analyzed using Energy Dispersive X-Ray Spectroscopy (EDX) and distinctly, Laser-Induced Breakdown Spectroscopy (LIB). The analysis of SEM images and XRD patterns of dust particles allows studying the dust's size and morphology of samples. The size of 1 to 30 microns was estimated for the dust particles with the maximum size distributions between 2 to 7 microns. Also, capsular, triangular, spherical, irregular, and polyhedral shapes are revealed by recorded particles' images. The XRD analyses show the existence of silicates, carbonates, phosphates mineral groups, calcites, quartz, gypsum, magnesium carbonate, and aluminum phosphates components in samples.
Laser-induced breakdown spectroscopy (LIBS) is a non-contact, fast response, high sensitivity, real-time, and multi-elemental analytical detection technique based on emission spectroscopy to measure the elemental composition. The elemental characterization of powder samples was carried out by investigating the emission spectra of breakdown plasma in the sample region. A 1064-nm Nd:YAG laser operating at high energy (100 mJ, 1 to 20 Hz), was focused on the surface of the tiny amount of powder sample to form an emitting plasma. The emission of produced plasma from the sample was collected by eight optical fibers and was detected by the spectrometer. The applied experimental setup allowed to record spectra in the range of 200 to 1200 nm with a spectral resolution of 0.4 nm. In total, 74 atomic emission lines of generated plasma were analyzed. Spectral analysis of obtained spectra enables to identify several elements such as calcium, silicon, iron, magnesium, aluminum, carbon, and other elements with less abundance such as potassium, sodium, strontium, manganese, titanium, cobalt, vanadium, barium and lead in the elemental composition of dust samples. The results deduced using the LIBS technique agree unambiguously with results obtained by EDX analysis of dust samples in this work. It is found that Laser-Induced Breakdown spectroscopy is a rapid, reliable, and powerful analytical tool for the diagnostic and detection of multiple elements for solid dust samples. Also, this technique is comparable with standard methods such as atomic absorption spectroscopy (AAS) and X-Ray Fluorescence (XRF) for chemical and elemental analysis of urban, mineral, and industrial dust.


Main Subjects

آرامی، ع.، اونق، م.، محمدیان، ع.، اکبری، م. و زراسوندی، ع.، ۱۳۹۷، تحلیل مطالعات مخاطره گردوغبار در جنوب غرب ایران در دوره 22 ساله (1996-2017)، نشریه تحلیل فضایی محیطی، (۱)۵، ۳۹-۶۶.
جبالی، ع.، اختصاصی، م.، میرزاده، م. و زارع چاهوکی، ا.، ۱۳۹۶، پایش و ارزیابی میزان غلظت هواویز های حاکم بر شهر یزد، چهارمین همایش ملی فرسایش بادی و طوفان‌های گردو غبار، یزد، ایران.
حسینی نسب، ف.، افسری ولایتی، م. و قاسمی‌نژاد لیچایی، م.، ۱۳۹۵، علوم و فناوری نانو۱، انتشارات کوچک آموز، تهران-ایران.
عزیزی، ق.، میری، م. و نبوی، س. ا.، ۱۳۹۱، ردیابی پدیده گرد و غبار در نیمه غربی ایران، فصلنامه مطالعات جغرافیایی مناطق خشک، 2(7)، 63–81.
دلفراز، م‌.، معماریان، م. ح. و جغتایی، م.، ۱۳۹۶، مطالعه مشخصات فیزیکی هواویزهای موجود در طوفان‌های گرد و غبار منطقه یزد، پایان‌نامه کارشناسی ارشد، دانشگاه یزد، یزد، ایران.
عظیم زاده، ح.، منتظرقائم، م.، ترابی میرزایی، ف. و تجملیان، م.، ۱۳۸۹، اندازه‌گیری غبار ریزشی سطح شهر یزد با استفاده از تله رسوبگیر MDCO در دوره سه ماهه تابستان ۱۳۸۹، دومین همایش ملی فرسایش بادی، یزد، ایران.
Al-Hurban, A. E. and Al-Ostad, A. N., 2010, Textural characteristics of dust fallout and potential effect on public health in Kuwait City and suburbs. Environmental Earth Sciences, 60(1), 169-181.
Aïssa, B., Isaifan, R. J., Madhavan, V. E. and Abdallah, A. A., 2016, Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance. Scientific Reports, 6(July), 1–12.
Carranza, J. E., Fisher, B. T., Yoder, G. D. and Hahn, D. W., 2001, On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochimica Acta-Part B Atomic Spectroscopy, 56(6), 851–864.
Cheng, M. D., 2000, Real-time measurement of trace metals on fine particles by laser-induced plasma techniques. Fuel Processing Technology, 65, 219–229.
Dong, F. Q., Chen, W., Dai, Q. W., Deng, Y. Q., He, P., He, X. C., Tang, J., Liu, L. Z. and He, H., 2015, Characterization of mineralogy and surface zeta potential of atmospheric dust fall in northwest China. Mineralogy and Petrology, 109(3), 387–395.
Fisher, B. T., Johnsen, H. A., Buckley, S. G. and Hahn, D. W., 2001, Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals.
Gallou, G., Sirven, J. B., Gallou, G., Dutouquet, C., Bihan, O. Le and Frejafon, E., 2011, Aerosols analysis by libs for monitoring of air pollution by industrial sources. Aerosol Science and Technology, 45(8), 918–926.
Kwata, M. and Moja, S., 2017, Characterization of Settleable Dust and Surface Dust Samples from the Old and Abandoned Asbestos Mine Dumps in the Limpopo Province, South Africa. J Pollut Eff Cont., 5(4), 206.
Hahn, D. W., 1998, Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles. Applied Physics Letters, 72(23), 2960–2962.
Hahn, D. W. and Lunden, M. M., 2000, Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Science and Technology, 33(1–2), 30–48.
Hettinger, B., Hohreiter, V., Swingle, M. and Hahn, D. W., 2006, Laser-induced breakdown spectroscopy for ambient air particulate monitoring: Correlation of total and speciated aerosol particle counts. Applied Spectroscopy, 60(3), 237–245
Hong, Y. C., Pan, X. C., Kim, S. Y., Park, K., Park, E. J., Jin, X., Yi, S. M., Kim, Y. H., Park, C. H., Song, S. and Kim, H., 2010, Asian Dust Storm and pulmonary function of school children in Seoul. Science of the Total Environment, 408(4), 754–759.
Kumar, B., Verma, K. and Kulshrestha, U., 2014, Deposition and Mineralogical Characteristics of Atmospheric Dust in relation to Land Use and Land Cover Change in Delhi (India). Geography Journal, 2014, 1–11.
Kwak, J. H., Kim, G., Kim, Y. J. and Park, K., 2012, Determination of heavy metal distribution in pm 10 during asian dust and local pollution events using Laser Induced Breakdown Spectroscopy (LIBS). Aerosol Science and Technology, 46(10), 1079–1089.
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z. and Huang, L., 2014, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853.
Lim, J. Y. and Chun, Y., 2006, The characteristics of Asian dust events in Northeast Asia during the springtime from 1993 to 2004. Global and Planetary Change, 52(1–4), 231–247.
Lue, Y. L., Liu, L. Y., Hu, X., Wang, L., Guo, L. L., Gao, S. Y., Zhang, X. X., Tang, Y., Qu, Z. Q., Cao, H. W., Jia, Z. J., Xu, H. Y. and Yang, Y. Y., 2010, Characteristics and provenance of dustfall during an unusual floating dust event. Atmospheric Environment, 44(29), 3477–3484.
Martin, M. Z., Cheng, M. D. and Martin, R. C., 1999, Aerosol measurement by laser-induced plasma technique: A review. Aerosol Science and Technology, 31(6), 409–421.
Mukherjee, D. and Cheng, M. D., 2008, Quantitative analysis of carbonaceous aerosols using laser-induced breakdown spectroscopy: A study on mass loading induced plasma matrix effects. Journal of Analytical Atomic Spectrometry, 23(1), 119–128.
Noll, R., 2012, Laser-Induced Breakdown Spectroscopy Fundamentals and Applications.
Onder, S. and Dursun, S., 2006, Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmospheric Environment, 40(6), 1122–1133.
Rauschenbach, I., Lazic, V., Pavlov, S. G., Hübers, H. W. and Jessberger, E. K., 2008, Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness. Spectrochimica Acta-Part B Atomic Spectroscopy, 63(10), 1205–1215.
Reyhani, A., Mortazavi, S. Z., Parvin, P. and Mahmoudi, Z., 2012, Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures. Spectrochimica Acta-Part B Atomic Spectroscopy, 74–75, 124–130.
Rodríguez, I., Galí, S. and Marcos, C., 2009, Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale. Environmental Geology, 56(8), 1551–1561.
Sandstrom, T. and Forsberg, B., 2008, Desert dust: An unrecognized source of dangerous air pollution, Epidemiology, 19(6), 808–809.
Satsangi, P. G. and Yadav, S., 2014, Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy-energy dispersive spectrometer: Its relation with different pollution sources. International Journal of Environmental Science and Technology, 11(1), 217–232.
Senthil Kumar, R. and Rajkumar, P., 2014, Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Physics and Technology, 67, 30–41.
Shao, Y. aping., 2008, Land-Surface Modelling. Physics and Modelling of Wind Erosion, 91–115.
Song, Y. C., Eom, H. J., Jung, H. J., Malek, M. A., Kim, H. K., Geng, H. and Ro, C. U., 2013, Investigation of aged Asian dust particles by the combined use of quantitative ED-EPMA and ATR-FTIR imaging. Atmospheric Chemistry and Physics, 13(6), 3463–3480.
Wang, S., Wang, J., Zhou, Z. and Shang, K., 2005, Regional characteristics of three kinds of dust storm events in China. Atmospheric Environment, 39(3), 509–520.
Wang, X., Dong, Z., Zhang, C., Qian, G. and Luo, W., 2009, Characterization of the composition of dust fallout and identification of dust sources in arid and semiarid North China. Geomorphology, 112(1–2), 144–157.
Zarasvandi, A., Carranza, E. J. M., Moore, F. and Rastmanesh, F., 2011, Spatio-temporal occurrences and mineralogical-geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). Journal of Geochemical Exploration, 111(3), 138–151.
Zhang, R., Han, Z., Cheng, T. and Tao, J., 2009, Chemical properties and origin of dust aerosols in Beijing during springtime. Particuology, 7(1), 61–67.
“NIST: Atomic Spectra Database Lines Form.” https://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed May 28, 2020).