Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble

Document Type : Research Article

Authors

1 Assistant Professor, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

2 Post-Doc Researcher, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Climate change with changes in precipitation patterns around the world can cause significant changes in the frequency, intensity and duration of precipitation events. In the context of climate change and with the increase of extreme climate events, irreparable consequences are imposed on the environment and the economy. Therefore, it is necessary to have an appropriate understanding of the frequency, intensity and spatial distribution of these extreme events in order to take a fundamental step in preventing damage caused by them. The purpose of this study is to analyze the characteristics of consecutive dry/wet days during 1975-2014 and 2021-2100 based on the output of CMIP6 models. In this regard, the evaluation of CMIP6 models against gauge precipitation data has been done in Iran.
In this study, historical precipitation (1975-2014) and scenarios-based output of CMIP6 models under shared socioeconomic pathways (SSPs) in the two future periods (2021-2060 and 2061-2100) were used. Basic statistics of r, RMSE, MBE and receiver operating characteristic (ROC) were used to validate the precipitation output of selected models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL). Then, consecutive dry and wet days were calculated using the CDD and CWD indices of the Expert team on climate change detection and indices (ETCCDI). After examining each individual model, an ensemble model is applied with independent weighted mean (IWM) method.
The results showed that among the five CMIP6 models, the IPSL-CM6A-LR model has the most underestimation and the UKESM1-0-LL has the most overestimation for Iran precipitation. The average amount of precipitation bias in the whole country for GFDL-ESM4 (2.56), IPSL-CM6A-LR (2.29), MPI-ESM1-2-HR (2.89), MRI-ESM2-0 (2.18), and UKESM1-0-LL (2.53) mm were calculated. The skill score is improved significantly by applying the multi model ensemble (MME). Consecutive dry days in Iran will increase by a maximum of 26.4 days under the SSP5-8.5 scenario in the period 2061-2100 for the Caspian Sea and Lake Urmia basins. In contrast, consecutive wet days will decrease in these two basins.
Validation results for the period of 1975-2014 showed that (compared to observations), CMIP6 models have a high performance in estimating precipitation in Iran. However, despite the uncertainties in precipitation change, the CMIP6 results provide evidence that the anomaly of consecutive dry and wet periods is an indicator for short-term droughts under increasing climate change conditions. Consecutive dry days will increase significantly in the north and northwest of Iran in the future.
The maximum changes related to CDD and CWD indices are observed under SSP5–8.5 scenario, while the lowest frequency for both indices is under SSP1–2.6 scenario. Examination of CDD and CWD anomalies showed that even in the optimistic scenario (SSP1-2.6), drought responses to climate change are significant. Consecutive dry periods are increasing in most of the northern, northwestern and northeastern regions of Iran. It is urgent to consider these changes in the hydrological cycle as a tool to improve water management, especially in the northern and northwestern regions of Iran. Also, in some areas, such as the southeast and the coasts of the Persian Gulf, there is a significant decrease in consecutive dry periods, which indicates an increase in precipitation on a seasonal and inter-annual scale in the future.

Keywords

Main Subjects


بابایی‌فینی، ا.، قاسمی، ا. و فتاحی، ا. 1393، بررسی اثر تغییر اقلیم بر روند نمایه های حدی بارش ایران زمین، تحلیل فضایی مخاطرات محیطی، سال 1، شماره 3، 103-85.
تاج بخش، س.، عیسی خانی، ن. و فضل کاظمی ا. 1394، ارزیابی خشک‌سالی هواشناسی در ایران با استفاده از شاخص «استانداردشدة بارش و تبخیر-تعرق (SPEI)»، م. فیزیک زمین و فضا، 41(2)، 313-321.
زرین، آ. و داداشی رودباری، ع.، 1399، پیش‌نگری چشم‌انداز بلندمدت دمای آینده ایران مبتنی‌بر برونداد پروژة مقایسة مدل‌های جفت‌شدة فاز ششم (CMIP6)، فیزیک زمین و فضا، 46(3)، 583-602.
صادقی­نیا، ع.، 1391، بررسی و مقایسه دوره های تر و خشک در بخش های مختلف اقلیمی ایران، جغرافیای طبیعی، دوره 5، شماره 18، صص 91-81.
قهرمان، ن.، بابائیان، ا. و طباطبایی، م.، 1395، ارزیابی پس‌پردازش برون‌دادهای دینامیکی‌مدل‌های اقلیمی در برآورد تغییرات تبخیر ‌تعرق پتانسیل تحت سناریوهای واداشت تابشی (بررسی موردی: دشت مشهد)، م. فیزیک زمین و فضا، 42(3)، 687-696.
معصوم پورسماکوش، ج.، میری، م. و پورکمر، ف.، 1396، ارزیابی داده‌های مدل‌های اقلیمی CMIP5 در مقابل داده‌های مشاهده‌ای ایران، م. ژئوفیزیک ایران، 11(4)، 40-53.
نصرتی، ک. 1393، ارزیابی شاخص بارش- تبخیر و تعرّق استاندارد شده (SPEI) جهت شناسایی خشکسالی در اقلیم‌های مختلف ایران، فصلنامه علوم محیطی، 12(4)، 74-63.
Ahmadi, H., Rostami, N. and Dadashi-roudbari, A., 2020, Projected climate change in the Karkheh Basin, Iran, based on CORDEX models. Theoretical and Applied Climatology, 142(1), 661-673.
Akinsanola, A. A., Kooperman, G. J., Reed, K. A., Pendergrass, A. G. and Hannah, W. M., 2020, Projected changes in seasonal precipitation extremes over the United States in CMIP6 simulations. Environmental Research Letters, 15(10), 104078.
Akinsanola, A. A., Ongoma, V. and Kooperman, G. J., 2021, Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmospheric Research, 105509.
Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F. and Tagipour, A., 2006, Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5).
Alexandersson, H., 1986, A homogeneity test applied to precipitation data. Journal of climatology, 6(6), 661-675.
Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P. and Tang, J., 2020, Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology.
Bishop, C. H. and Abramowitz, G., 2013, Climate model dependence and the replicate Earth paradigm. Climate dynamics, 41(3-4), 885-900.
Brown, P. J., Bradley, R. S. and Keimig, F. T., 2010, Changes in extreme climate indices for the northeastern United States, 1870–2005. Journal of Climate, 23(24), 6555-6572.
Duan, Y., Ma, Z. and Yang, Q., 2017, Characteristics of consecutive dry days variations in China. Theoretical and Applied Climatology, 130(1-2), 701-709.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. and Taylor, K. E., 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958.
Field, C. B., Barros, V., Stocker, T. F. and Dahe, Q. (Eds.), 2012, Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.
Gusain, A., Ghosh, S. and Karmakar, S., 2020, Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmospheric Research, 232, 104680.
Huang, J., Chen, X., Xue, Y., Lin, J. and Zhang, J., 2017, Changing characteristics of wet/dry spells during 1961–2008 in Sichuan province, southwest China. Theoretical and Applied Climatology, 127(1-2), 129-141.
Kharin, V. V., Zwiers, F. W., Zhang, X. and Wehner, M., 2013, Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic change, 119(2), 345-357.
Klutse, N.A.B., Ajayi, V.O., Gbobaniyi, E.O., Egbebiyi, T.S., Kouadio, K., Nkrumah, F., Quagraine, K.A., Olusegun, C., Diasso, U., Abiodun, B.J. and Lawal, K., 2018, Potential impact of 1.5 C and 2 C global warming on consecutive dry and wet days over West Africa. Environmental Research Letters, 13(5), 055013.
Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K. and Papadimitriou, L., 2016, Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dynamics, 47(5), 1881-1898.
Kriegler, E., Luderer, G., Bauer, N., Baumstark, L., Fujimori, S., Popp, A., Rogelj, J., Strefler, J. and Van Vuuren, D.P., 2018, Pathways limiting warming to 1.5° C: a tale of turning around in no time?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160457.
Kutiel, H., 1985, The multimodality of the rainfall course in Israel, as reflected by the distribution of dry spells. Archives for meteorology, geophysics, and bioclimatology, Series B, 36(1), 15-27.
Marengo, J. A., Rusticucci, M., Penalba, O. and Renom, M., 2010, An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: part 2: historical trends. Climatic Change, 98(3), 509-529.
Meehl, G.A., Senior, C.A., Eyring, V., Flato, G., Lamarque, J.F., Stouffer, R.J., Taylor, K.E. and Schlund, M., 2020, Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6(26), eaba1981.
Mishra, A. K., Singh, V. P. and Jain, S. K., 2010, Impact of global warming and climate change on social development. Journal of Comparative Social Welfare, 26(2-3), 239-260.
Nastos, P. T. and Zerefos, C. S., 2009, Spatial and temporal variability of consecutive dry and wet days in Greece. Atmospheric Research, 94(4), 616-628.
Nguyen, P., Thorstensen, A., Sorooshian, S., Zhu, Q., Tran, H., Ashouri, H., Miao, C., Hsu, K. and Gao, X., 2017, Evaluation of CMIP5 model precipitation using PERSIANN-CDR. Journal of Hydrometeorology, 18(9), 2313-2330.
Papalexiou, S. M. and Montanari, A., 2019, Global and regional increase of precipitation extremes under global warming. Water Resources Research, 55(6), 4901-4914.
Putra, I. D. G. A., Rosid, M. S., Sopaheluwakan, A., Ulina, Y. C., Harsa, H., Permana, D. S. and Cho, J., 2019, November. Projected extreme climate indices in the java island using cmip5 models. In IOP Conference Series: Earth and Environmental Science (Vol. 363, No. 1, p. 012022). IOP Publishing.
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C. and Aumont, B., 2010, Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest. Atmospheric Chemistry & Physics, 10(16).
Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O. and Lutz, W., 2017, The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change, 42, 153-168.
Rowell, D. P., 2019, An observational constraint on CMIP5 projections of the East African long rains and southern Indian Ocean warming. Geophysical Research Letters, 46(11), 6050-6058.
Sharma, S., Khadka, N., Hamal, K., Baniya, B., Luintel, N. and Joshi, B. B., 2020, Spatial and temporal analysis of precipitation and its extremities in seven provinces of Nepal (2001–2016). Applied Ecology and Environmental Sciences, 8(2), 64-73.
Shi, J., Cui, L., Wen, K., Tian, Z., Wei, P. and Zhang, B., 2018, Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environmental research, 161, 381-391.
Singh, D., Tsiang, M., Rajaratnam, B. and Diffenbaugh, N. S., 2014, Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nature Climate Change, 4(6), 456-461.
Solman, S.A., Sanchez, E., Samuelsson, P., da Rocha, R.P., Li, L., Marengo, J., Pessacg, N.L., Remedio, A.R.C., Chou, S.C., Berbery, H. and Le Treut, H., 2013, Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Climate Dynamics, 41(5-6), 1139-1157.
Stolpe, M. B., Cowtan, K., Medhaug, I. and Knutti, R., 2020, Pacific variability reconciles observed and modelled global mean temperature increase since 1950. Climate Dynamics, 1-22.
Stouffer, R. J., Eyring, V., Meehl, G. A., Bony, S., Senior, C., Stevens, B. and Taylor, K. E., 2017, CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society, 98(1), 95-105.
Sun, F., Mejia, A., Zeng, P. and Che, Y., 2019, Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin. Science of the Total Environment, 696, 134076.
Tebaldi, C. and Knutti, R., 2007, The use of the multi-model ensemble in probabilistic climate projections. Philosophical transactions of the royal society A: mathematical, physical and engineering sciences, 365(1857), 2053-2075.
Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H. and Abbaspour, K. C., 2019, The future of extreme climate in Iran. Scientific reports, 9(1), 1-11.
Valdes‐Abellan, J., Pardo, M. A. and Tenza‐Abril, A. J., 2017, Observed precipitation trend changes in the western Mediterranean region. International Journal of Climatology, 37, 1285-1296.
Wainwright, C. M., Marsham, J. H., Keane, R. J., Rowell, D. P., Finney, D. L., Black, E. and Allan, R. P., 2019, ‘Eastern African Paradox’rainfall decline due to shorter not less intense Long Rains. npj Climate and Atmospheric Science, 2(1), 1-9.
Wang, S., Zhang, M., Wang, B., Sun, M. and Li, X., 2013, Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quaternary International, 313, 110-117.
Wang, X., Hou, X. and Zhao, Y., 2021, Changes in consecutive dry/wet days and their relationships with local and remote climate drivers in the coastal area of China. Atmospheric Research, 247, 105138.
Wang, Z., Zhong, R., Lai, C., Zeng, Z., Lian, Y. and Bai, X., 2018, Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agricultural and Forest Meteorology, 249, 149-162.
Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., Österle, H., Adam, J.C., Bellouin, N., Boucher, O. and Best, M., 2011, Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12(5), 823-848.
Wu, J. and Chen, X., 2019, Spatiotemporal trends of dryness/wetness duration and severity: The respective contribution of precipitation and temperature. Atmospheric Research, 216, 176-185.
Yuan, Q., Wu, S., Dai, E., Zhao, D., Zhang, X. and Ren, P., 2017, Spatio-temporal variation of the wet-dry conditions from 1961 to 2015 in China. Science China Earth Sciences, 60(11), 2041-2050.
Zhou, T., Chen, X. and Wu, B., 2019, Frontier issues on climate change science for supporting Future Earth. Chinese Science Bulletin, 64(19), 1967-1974.
Zolina, O., Simmer, C., Kapala, A. and Gulev, S., 2005, On the robustness of the estimates of centennial‐scale variability in heavy precipitation from station data over Europe. Geophysical Research Letters, 32(14).