Calculating magnetic activity cycle of M-type dwarf stars using GLS technique and index-H_α; Proxima Centauri

Document Type : Research Article

Authors

1 Assistant Professor, Department of Physics, Payame Noor University, Tehran, Iran

2 M.Sc. Graduated, Department of Physics, Payame Noor University, Tehran, Iran

Abstract

The study of the existence of life or habitable zone somewhere in the universe, beyond the Earth, has been one of the important research areas in the field of astronomy and astrophysics in the last few decades. Countless studies have been done and are being done theoretically and experimentally.
Proxima Centauri () with visual magnitude of 11.01 and at a distance of 1.3 pc is the closest star to Earth after the Sun and is especially important for our knowledge of very cool stars. This M5.5V spectral type star is the faintest member of the Alpha Centauri ternary star system, located about 1400 astronomical units closer to Earth than the other members. The physical characteristics of this star, including radius (), mass (, rotational periodicity (1.5 35) and its age, which is about 4.85 billion years old, are well determined. Despite its old age, Proxima Centauri is an active star, and like the sun it has activity cycle (the activity cycle of the sun is about 11 years).
Generally, M-type stars are hard to study due to their optical faintness. But Studying Proxima Centauri can improve our knowledge of very cool stars as its proximity lets us to observe it with great accuracy. Moreover, its similarity to the sun and the possibility of having a system of planets around it and consequently the study of life on these planets is of particular importance.
This paper aims to determine the activity cycle of Proxima Centauri star using spectral line  and to evaluate the generalized Lamb-Scargel periodogram technique (GLS) to determine the period of active dwarf stars, including Proxima Centauri.
The GLS is an extension to the Lomb-Scargle periodogram which takes into account the measurement of errors and also is more suitable for time series with non-zero average. GLS tries to fit the sinusoidal equation to the time series and find the power spectrum for frequencies. We consider a given periodogram peak, derived from GLS, significant when it exceeds the one present “false alarm probability” level (FAP), which means there is 99% confidence that it is real and could not be simulated by Gaussian noise. FAP levels are calculated by performing random permutations of the data with similar times of observations.
For this purpose, we used HARPS spectroscopic data over a period from 2004 to 2017. HARPS, the High Accuracy Radial velocity Planet Searcher at the European Southern Observatory La Silla 3.6m Cassegrain telescope is dedicated to the discovery of extrasolar planets. It is a fibre-fed high resolution echelle spectrograph. This instrument is used to accurately measure radial velocities of the order of 1 m/s in extrasolar planet research. The spectral area is 378-691 nm and its resolution 115,000. Therefore, from this point of view, we can say that our analysis is more accurate than others.The magnetic activity period of Proxima Centauri is obtained as 2349 days, which is in good agreement with the results obtained from other methods. Therefore, our results confirm the efficiency and superiority of the generalized Lamb-Scargel periodogram technique in determining the period of active cool dwarf stars.

Keywords

Main Subjects


عزیزی، ف. و میرترابی، م. ت.، ۱۳۹۸، محاسبه دوره‌تناوب ستاره‌های متغیر دلتا اسکوتی با استفاده از تکنیک تناوب‌نگار لمب-اسکارگل تعمیم‌یافته، م. فیزیک زمین و فضا، ۴۵، ۸۸-۸۱.
Azizi, F. and Mirtorabi, M. T., 2018, A survey of TiOλ567 nm absorption in solar-type, MNRAS, 475, 2253–2268.
Allen, C. W., 1976, Astrophysical Quantities (Astrophysical Quantities, London:Athlone, 3rd edition.
Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne,J. H., Frazer, J., Woodard-Eklund, L., Bradford, M., Rao, L. M., Wilson, O. C., Zhang, Q., Bennett, W., Briggs, J., Carroll, S. M., Duncan, D. K., Figueroa, D., Lanning, H. H., Misch, T., Mueller, J., Noyes, R. W., Poppe, D., Porter, A. C., Robinson, C. R., Russell, J., Shelton, J. C., Soyumer, T., Vaughan, A. H. and Whitney, J. H., 1995, Chromospheric Variations in Main-Sequence Stars, ApJ, 438, 269.
Benedict, G. F., 1980, UBV surface photometry of the center of N4314, AJ, 85:513-520.
Benedict, G. Fritz., McArthr, Barbara., Nelan, E., Story, D., Whipple, A. L., Shelus, P. J., Jefferys, W. H., Hemenwey, P. D., Franz, Otto G., Wasserman, L, H., Duncombe, R. L., Altena, Wm. Van. and Fredrick, L. W., 1998, Photometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: A Search for Periodic Variations, AJ, 116,429.
Benedict, G. F., 2007, Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations, AJ, 1810,1827.
Bonfiles, X., Mayor, M., Delfosse, X., Forveille, T., Gillon, M., Perrier, C., Udry, S., Bouchy, F., Lovis, C., Pepe, F., Queloz, D., Santos, N. C. and Bertaux, J. L., 2007, the HARPS search for southern extra-solar planets, A&A, 474:293-299.
Burning, F. J. M., 1963, Bull. Astr. Inst. Netherlands, 17, 22.
Boisse, I., Moutou, C., Vidal-Madjar, A., Bouchy, F., Pont, F., Hebrard, G., Bonfils, X., Croll, B., Delfosse, X., Desort, M., Forveille, T., Lagrange, A.-M., Loeillet, B., Lovis, C., Matthews, J. M., Mayor, M., Pepe, F., Perrier, C., Queloz, D., Rowe, J. F., Santos, N. C., Segransan, D. and Udry, S., 2009, Stellar activity of planetary host star HD 189 733, A&A, 495, 959.
Byrne, P. B. and McKay, D., 1989, Activity in late-type stars, A&A, 223, 241-245.
Cincunegui, C. and Mauas, P. J. D., 2004, Cheromospheric activity in Proxima Centauri, 13th Cool Stars Workshop, Hanburg.
Cincunegui, C. and Mauas, P. J. D., 2005, Cheromospheric activity in Proxima Centauri, 13th Cambridge Workshop on cool star, stellar systems and the sun, Vol.560. P.479.
Cincunegui C., Diaz R. F. and Mauas P. J. D., 2007a, Hα and the Ca II H and K lines as activity proxies for late-type stars, A&A, 469, 309.
Cincunegui, C., Diaz, R.F. and Mauas, P. J. D., 2007b, A possible activity cycle in Proxima Centauri, A&A, 1107-1113.
Cumming, A., Marcy, G. W. and Butler, R. P., 1999, The Lick Planet Search: Detectability and Mass Thresholds, ApJ, 526, 890.
Doyle, J. G. 1987, An activity-rotation relationship in F-M dwarfs from MG II H and K flux، MNRAS, 224, 1P.
Gilliland, R. L. and Baliunas, S. L., 1987, Objective characterization of stellar activity cycles. I - Methods and solar cycle analyses, ApJ, 314, 766.
Guinan, E. and Morgan, N., 1996, Proxima Centauri :Rotation,chromosperic Activity ,and Flares. AmericanAstronomical society, 942.
Guinan, E., 2010, An X-ray Study of The Red Dwarf Next Door: The Long-Term Activity of Proxima Cen, Chandra proposal ID 12200639.
Haisch, B. M., Butler, C. J., Foing, B., Rodono, M. and Giampapa, M. S., 1990, Rotational modulation and flares on RS Canum Venaticorum and BY Draconis-type stars. XV. Observations of Proxima Centauri and solar calibration data, A&A, 232, 387-395.
Irwin A. W., Campbell, B., Morbey C. L., Walker, G. A. H. and Yong S., 1989, Long-period radial-velocity variations of Arcturus, PASP, 101, 147.
Lomb, N. R., 1976, Least-squares frequency analysis of unequally spaced data, Ap. Space Sci., 39, 447.
Lovis, C., Dumusque, X., Santos, N. C., Bouchy, F., Mayor, M., Pepe, F., Queloz, D., Segransan, D. and Udry, S., 2011, The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities, Arxive e-prints 1107.5325L.
Mayor, M., Pepe, F., Queloz, D., Bouchy, F., Rupprecht, G., Locurto, G., Avila, G., Benz, W., Bertaux, J.-L., Bonfiles, X., Dall, TH., Dekker, H., Delabre, B., Eckert, W., Fleury, M., Gilliotte, A., Gojak, D., Guzman, J. C., Kohler, D., Lizon, J.-L., Longinotti, A., Lovis, C., Megevand, D., Pasquini, L., Reyes, J., Sivan, J.-P., Sosnowska, D., Soto, R., Udry, S., Van Kesteren, A., Weber, L. and Weilenmann, U., 2003, The Messenger, 114, 20
Petterson, J.A., (1980), Accretion disks in cataclysmic variables.I.The Eclipse-Related phase shifts in DQ Herculis and UX ursae Majoris, ApJ, ), 241:247-256.
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S. and Ventura, P., 2003, The stellar activity-rotation relationship revisited :Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs, A&A, 397:147-157.
Paczynski, B., 2002, Massive Variability Search and Monitoring by OGLE and ASAS (All-Sky Automated Survey), astro.ph.12144P
Reale, G., Micela, G., Peres, G., Betta, R. and Serio, S., 1997, Stellar flaring loops, MmSAF, 68, 1103R.
Reiner, A. and Basri, G., 2008, The moderate magnetic field of the flare star Proxima Centauri, ApJ, in press, [arxiv:0805.1059]
Scargle, J. D., 1982, Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data, ApJ, 263, 835-853.
Ségransan, D., Kervella, P., Forveille, T. and Queloz, D., 2003, First radius measurements of very low mass stars with the VLTI, A&A, 397 (3): L5–L8.
Savano, I. S., 2012, Activity Cycles of M Dwrs, Astronomicheskii Zhurnal, 793-799.
Suaraz Mascareno, A. R., 2016, Rotation periods of late-type dwarf stars from time series highresolution. MNRAS, 2745-2756.
Sturrock, P. A. and Scargle, J. D., 2010, False-alarm Probability in Relation to Oversampled Power Spectra, with Application to Super-Kamiokande Solar Neutrino Data, ApJ, 718, 527.
Zechmeiester, M. and Kurster M., 2009, The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms, 496, 577.