Doppler Oscillations in the Solar Spicules based on IRIS data

Document Type : Research Article

Authors

1 Assistant Professor, Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Associate Professor, Department of Physics, Payame Noor University (PNU), Tehran, Iran

Abstract

In this research, we study the oscillating properties of the solar spicules in the line of sight with spectral measurements recorded by Interface Region Imaging Spectrograph (IRIS) on August 17, 2014. The primary purpose of IRIS is the observation of the movement of materials, fluctuations, and energy absorption and heat production in the lesser- known region of the solar atmosphere which affect the behavior of the Earth's atmosphere, the performance of satellites, power transmission networks and radio communications. The transmission of energy through waves and oscillations can play an important role in understanding of the solar dynamics, and responding to the problems about the sudden rise of the solar atmosphere temperature to several million Kelvin from the transition layer to the solar corona. The source of energy required to heat the solar corona plasma to a temperature of one million Kelvin in the Sun's dynamic photosphere is a matter of debate in solar physics. One of the mechanisms of energy transfer is the propagation of magneto-hydrodynamic waves. These waves in photospheric magnetic tubes can be generated by granular shock motions and then propagate along the chromospheric magnetic field and penetrate the corona to transfer energy in the form of heat. Therefore, observations of oscillating motions in the chromosphere are a crucial test for the theory of corona heating. Quasi-periodic fluctuations in spicules appear mainly as displacement of these structures in image observations or periodic shifts in spectral lines. We use Interface Region Imaging Spectrograph (IRIS) to measure the spectrum around a narrow slit. By fitting a Gaussian profile of the Si IV profiles, we can calculate Doppler velocity shifts up to an altitude of 4200 km along the spicules. The Doppler velocity range from the edge of the sun to an altitude of 4200 km was obtained from 12 to 15 kms-1 (blue- shift), and from10 to 15 kms-1 (red- shift). For determining the dominant periods of Doppler shift oscillations, it is needed that the maximum intensity positions of 150 spectral profiles are collected, and a set of temporal signals is generated as a temporal signal. Any physical quantity that changes according to an independent parameter or variable is called a signal. If the parameter is a time variable, it is called a temporal signal, and if it is a position, the signal is called a spatial signal. These signals contain information about their sources, for example, period. So by processing signals, the behavior of resources can be studied and predicted. After processing temporal signals, we apply the wavelet analysis. Wavelet analysis is a useful method for simultaneous diagnosis of the power in time and frequency domains for temporal signals. The results of wavelet analysis revealed Doppler shift fluctuations with dominant periods of 3, 5 and 8 minutes. According to the results of this study, it is suggested that the main contribution of Doppler shift fluctuations in the solar spicules, observed transversely perpendicular to the axis of the solar spicules, is due to kink and alfven waves. These waves can play an essential role in heating the solar corona to millions of Kelvin.

Keywords

Main Subjects


Antolin, P., Schmit, D., Pereira, T. M. D., De Pontieu, B. and De Moortel, I., 2018, Transverse Wave Induced Kelvin-Helmholtz Rolls in Spicules, ApJ, 856, 44A, Doi:10.3847/1538-4357/aab34f.
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S. and Katsukawa, Y. P., 2007a, Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind, science, 318, 1574, Doi: 10.1126/science.1151747.
De Pontieu, B., Erdelyi, R. and James, S. P., 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows, Nature, 430, 536, Doi:10.1038/nature02749.
De Pontieu, B., Carlsson, M., Rouppe van der Voort, L. H. M., Rutten, R. J., Hansteen, V. H. and Watanabe, H., 2012, Ubiquitous Torsional Motions in Type II Spicules, ApJ, 752, L12, DOI:10.1088/2041-8205/752/1/L12.
De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard1, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., W¨ulser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, L., rookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V.,  Larsen., S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer L., Carvalho R., Kleint, L., Marmie, J., Mazmanian E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto., T.J., Gummin, MA., Auker, G. Jerram, P., Pool, P., Waltham, N., 2014, The Interface Region Imaging Spectrograph (IRIS). Sol. Phys., 289, 2733.
Langangen, Ø., De Pontieu, B., Carlsson, M., Hansteen, V. H., Cauzzi, G. and Reardon, K., 2008, Search for High Velocities in the Disk Counterpart of Type II Spicules, ApJ., 679, L167, Doi:10.1086/589442.
Pasachoff, J. M., Jacobson, W. A. and Sterling, A. C., 2009, Limb Spicules from the Ground and from Space, Sol. Phys., 260, 59, Doi:10.1007/s11207-009-9430-x.
Nakariakov, V. M. and Verwichte, E., 2005, Coronal Waves and Oscillations, Living Rev. Solar Phys., 2, 3.
Pereira, T. M. D., De Pontieu, B. and Carlsson, M., 2012, Quantifying Spicules, ApJ, 759,18, Doi:10.1088/0004-637X/759/1/18.
Pereira, T. M. D., De Pontieu, B., Carlsson, M., Hansteen, V., Tarbell, T. D., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Wülser, J. P., Martínez-Sykora, J., Kleint, L., Golub, L., McKillop, S., Reeves, K. K., Saar, S., Testa, P., Tian, H., Jaeggli, S. and Kankelborg, C., 2014, An Interface Region Imaging Spectrograph First View on Solar Spicules, ApJ, 792, L15, Doi:10.1088/2041-8205/792/1/L15.
Roberts, B., 2004, MHD Waves in the Solar Atmosphere. ESA SP., 547.
Rouppe van der Voort, L., Leenaarts, J., de Pontieu, B., Carlsson, M. and Vissers, G, 2009, On-disk Counterparts of Type II Spicules in the Ca II 854.2 nm and Hα Lines ApJ, 705, 272, Doi:10.1088/0004-637X/705/1/272.
Tavabi, E., Koutchmy, S. and Golub, L., 2015a, Limb Event Brightenings and Fast Ejection Using IRIS Mission Observations, Solar Physics., 290, 2871-2887, Doi: 10.1007/s11207-015-0771-3.
Tavabi, E., Koutchmy, S., Ajabshirizadeh, A., Ahangarzadeh Maralani, A. R. and Zeighami, S., 2015b, Alfvenic wave in polar limb spicules, Astronomy and Astrophysics. 573, 7, Doi: 10.1051/0004-6361/201423385.
Tavabi E., Ajabshirizadeh A., Ahangarzadeh Maralani A. R. and Zeighami S. 2015c, J. Astrophys. Astron, 2020JApA, 41, 18Z, Doi: 10.1007/s12036-020-09633-y.
Tavabi, E., 2018, Synchronized observations of bright points from the solar photosphere to the corona. MNRAS, 476 868-874. Doi: 10.1093/mnras/sty020.
Tavabi, E. and Koutchmy, S., 2019, Chromospheric peculiar off-limb dynamical events from IRIS observations, ApJ, 883, 41T, Doi:10.3847/1538-4357/ab3730.
Tei, A., Gun, S., Heinzel, P., Okamoto, T., Stepan, J., Jejcic, S. and Shibata, K., 2020, IRIS Mg II Observations and non-LTE modeling of off-limb spicules in solar coronal hole, 2020ApJ, 888, 2T, Doi:10.3847/1538-4357/ab5db1.
Torrence C. and Compo G. P., 1998, Bull. Am. Meteorol. Soc., 79, 61, Doi: 10.1175/1520-0477.
Tsiropoula, G., Tziotziou, K., Kontogiannis, I., Madjarska, M. S. Doyle, J. G. and Suematsu, Y., 2012, Solar Fine-Scale Structures. I. Spicules and Other Small-Scale, Jet-Like Events at the Chromospheric Level: Observations and Physical Parameters,  Space Sci. Rev., 169, 181-244, Doi: 10.1007/s11214-012-9920-2.
Zaqarashvili, T. V., 2003, Observation of coronal loop torsional oscillation, A&A, 399L, Doi: 10.1051/0004-6361:20030084.
Zaqarashvili, T. V. and Murawski, K., 2007, Torsional oscillations of longitudinally inhomogeneous coronal loops, A&A., 470, 353.
Zaqarashvili, T. V., Khutsishvili, E., V. Kukhianidze, V. and Ramishvili, G., 2007, Doppler shift oscillations in solar spicules, A&A, 474, 627-632, Doi:10.1051/0004-6361:20077661.
Zeighami, S., Ahangarzadeh Maralani, A. R., Tavabi, E. and Ajabshirizadeh, A., 2016, Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere, Solar Physics., 291, 847–858, Doi: 10.1007/s11207-016-0866-5.
Zeighami, S., Tavabi, E. and Amirkhanlou, E., 2020, Waves propagation in network and inter-network bright points channels between the chromosphere and transition regions with IRIS observations, 2020JApA, 41, 18Z, Doi:10.1007/s12036-020-09633-y.