Contribution of Source Emissions in the Air Pollution Modeling - a WRF/Chem Case Study

Document Type : Research Article


1 Ph.D. Student, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran

2 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran

3 Assistant Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran


We investigate the capability of the WRF/Chem model in the simulation of some criteria air pollutants, during a major air pollution episode between 16 and 21 December 2017. In this study, by employing the EDGAR-HTAP_v2 global emissions data in the WRF/Chem model, we evaluate the simulations of the surface mixing ratios of NO2, SO2, and CO. The RADM2 chemical mechanism with MADE-SORGAM aerosol scheme has been used as the chemical option of the WRF/Chem model, to simulate the meteorology-chemistry interactions. The variations of the time series of the pollutants and the comparisons of the results in Tehran with the measurement data showed that although the WRF/Chem simulations in Tehran presented considerable over-estimations, but the model’s performance with regard to the time variations of the concentrations of the gaseous agents over the polluted episode is acceptable, and therefore, could be considered in the operational air quality systems. Since emission data are not available for many metropolitan areas over Iran, the HTAP_v2 global dataset could be used as the emissions data with reliable accuracy for the numerical air quality models.


Main Subjects

Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S. and Shankar, U.M.A., 1998, Modal aerosol dynamics model for Europe: Development and first applications. Atmospheric environment, 32(17), 2981-2999.
Chahine, M.T., Pagano, T.S., Aumann, H.H., Atlas, R., Barnet, C., Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E.J., Goldberg, M. and Gautier, C., 2006, AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bulletin of the American Meteorological Society, 87(7), 911-926.
Carvalho, D., Rocha, A., Gomez-Gesteira, M. and Silva Santos, C., 2014, Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Appl. Energy. 135, 234–246.
Chang J. S., Brost R. A., Isaksen I. S. A., Madronich S., Middleton P., StockweU W. R. and Walcek C. J., 1987, A three-dimensional eularian acid deposition model: physical concepts and formulation. J. geophys. Res. 92, 14,681-14,700.
Dai, T., Cheng, Y., Goto, D., Li, Y., Tang, X., Shi, G. and Nakajima, T., 2021, Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem. Atmospheric Chemistry and Physics, 21(6), 4357-4379.
Ebel A., Hass H., Jakobs H. J., Laube M. and Memme-sheimer, M., 1991, Transport of atmospheric minor constituents as simulated by the EURAD model. In Proc. EMEP Workshop on Photooxidant Modelling for Long-Range Transport in Relation to Abatement Strategies (edited by Pankrath J.), 142-154. Umweltamt, Berlin, Germany.
Fast, J.D., Gustafson Jr, W.I., Easter, R.C., Zaveri, R.A., Barnard, J.C., Chapman, E.G., Grell, G.A. and Peckham, S.E., 2006, Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology‐chemistry‐aerosol model. Journal of Geophysical Research: Atmospheres, 111(D21).
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F. and Sanchez Gacita, M., 2011a, PREP-CHEM-SRC 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geosci. Model Dev., 4, 419-433.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C. and Eder, B., 2005, Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957-6975.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B. and Li, M., 2015, HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution Atmos. Chem. Phys. 15, 11411-11432, No editor, 2015.
Levelt, P.F., Van Den Oord, G.H., Dobber, M.R., Malkki, A., Visser, H., De Vries, J., Stammes, P., Lundell, J.O. and Saari, H., 2006, The ozone monitoring instrument. IEEE Transactions on geoscience and remote sensing, 44(5), 1093-1101.
Liu, S., Hua, S., Wang, K., Qiu, P., Liu, H., Wu, B., Shao, P., Liu, X., Wu, Y., Xue, Y. and Hao, Y., 2018, Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Science of the Total Environment. 2018 May 15; 624, 396-406.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q. and He, K., 2017a, Anthro-pogenic emission inventories in China: a review, Nat. Sci. Rev., 4, 834–866,, 2017a.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H. and Zheng, B., 2017b, MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963,, 2017b.
Mohan, M. and Gupta, M., 2018, Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India. Atmospheric Environment. 2018 Jul 1;185, 53-63.
Olivier, J.G., Van Aardenne, J.A., Dentener, F.J., Pagliari, V., Ganzeveld, L.N. and Peters, J.A., 2005, Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distributionof key sources in 2000. Environmental Sciences, 2(2-3), 81-99.
Peckham, S., Grell, G.A., McKeen, S.A., Barth, M., Pfister, G., Wiedinmyer, C., Fast, J.D., Gustafson, W.I., Zaveri, R.A. and Easter, R.C., 2011, WRF/Chem Version 3.3 User’s Guide, NOAA Technical Memo.
Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J., Gill, D.O., Coen, J.L., Gochis, D.J., Ahmadov, R., Peckham, S.E. and Grell, G.A., 2017, The weather research and forecasting model: Overview, system efforts, and future directions. Bulletin of the American Meteorological Society, 98(8), pp.1717-1737.
Skamarock, W.C. and Klemp, J.B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of computational physics, 227(7), 3465-3485.
Spiridonov, V., Jakimovski, B., Spiridonova, I. and Pereira, G., 2019, Development of air quality forecasting system in Macedonia, based on WRF-Chem model. Air Quality, Atmosphere & Health, 12(7), 825-836.
Stockwell, W. R., Middleton, P., Chang J. S. and Tang X., 1990, The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. geophys. Res. 95, 16343-16367.
Visser, A.J., Boersma, K.F., Ganzeveld, L.N. and Krol, M.C., 2019, European NO x emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone. Atmospheric Chemistry and Physics, 19(18), 11821-11841.
Wang, K., Y. Zhang, K. Yahya, S.-Y. Wu, and G. Grell, 2015, Implementation and Initial Application of New Chemistry-Aerosol Options in WRF-Chem for Simulating Secondary Organic Aerosols and Aerosol Indirect Effects for regional air quality, Atmospheric Environment, 115, 716-732, doi:10.1016/j.atmosenv.2014.12.007.
Wang, K., Zhang, Y., Yahya, K., Wu, S. Y. and Grell, G., 2015, Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality. Atmos. Environ. 115, 716–732.
Wei, W., Lv, Z.F., Li, Y., Wang, L.T., Cheng, S. and Liu, H., 2018, A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmospheric Environment, 175, 44-53.
Zhang, L., Wang, T., Zhang, Q., Zheng, J., Xu, Z. and Lv, M., 2016, Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRF‐Chem study in a polluted subtropical region. Journal of Geophysical Research: Atmospheres, 121(7), 3645-3662.