Combined Estimation of Nighttime Land Surface Temperature in Jazmourian Drainage Basin Using MODIS Sensor Data of Terra/Aqua Satellites

Document Type : Research Article

Authors

1 Ph.D. Student, Department of Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor, Department of Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

3 Assistant Professor, Department of Geography, Faculty of Humanities, University of Zanjan, Zanjan, Iran

4 Ph.D. Graduated, Department of Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Land surface temperature (LST) estimation is widely used in many applied and environmental studies such as agriculture, climate change, water resources, energy management, urban microclimate and environment. LST, which is the result of atmospheric-earth interaction, due to the sensitivity and influence of land surface conditions such as soil cover, soil moisture, albedo, surface roughness and the interaction of these factors with the atmosphere, can well determine changes in land surface temperature conditions. In the present study, Modis nighttime sensor products of both Terra and Aqua satellites (MOD11C3 & MYD11C3) from http://reverb.echo.nasa.gov/reverb for LST estimation in the Jazmourian drainage basin (southeast of Iran), were used in the period 2013-2019. After providing the products with monthly and spatial time steps of 5 km, calculations on two matrices; One monthly with dimensions of 2784 x 204 (204 represents the number of observations in consecutive months of 17 years studied (17 x 12) and 2784 represents the number of gridded points (cells) in Jazmourian drainage basin area) and the other is a seasonal matrix with dimensions of 2784 x 68 (68 representing the number of observations in consecutive chapters (17 x 4) were performed. After performing the relevant statistical and spatial analyzes in Excel and GIS software environment, nighttime LST estimation was used. The results showed that the nighttime LST in the statistical period increased by about 1 degree Celsius and this increase was more in the minimum temperatures (cold period months of the year) than the maximum nighttime LST. According to the findings, the maximum nighttime LST has occurred in the low altitudes of the central and southern regions and the minimum LST has also occurred in the northern heights of the drainage basin. The seasonal spatial distribution of the Earth's nighttime LST indicates the distribution of nighttime LST in the range of -10 to +35°C in winter and summer, respectively. Extreme fluctuations in nighttime LST during the seasonal terrestrial surface well show the prominent role of altitudes and latitudes in the temperature distribution of the Jazmourian drainage basin. Also, the time analysis of the studied variable shows a positive trend of nighttime LST in all four seasons, among which the spring and winter seasons had a higher upward slope. In addition; spatial estimation of nighttime LST anomalies, while confirming its increasing trend, shows the maximum location of nighttime LST anomalies in the central and western parts and the minimum anomalies in the eastern parts and northern heights of the drainage basin. Also, the analysis of monthly anomalies of nighttime LST shows the maximum occurrence of positive anomalies with +0.07°C in September 2016 and the minimum anomalies with -0.01 °C. are in January 2008. In general, the values of the nighttime LST significantly increased from 2008 onwards, especially in the months related to the cold period of the year (with a greater increase in the minimum nighttime LST than the maximum nighttime LST). This indicates the nighttime LST trend of the cold period of the year towards a warmer pattern. These conditions can be considered as an indicator of climate change and lead to changes in some environmental parameters such as relative humidity, evapotranspiration, soil surface moisture, snow persistence, dew point temperature and nightly reflective energy. Considering the high capabilities of the Jazmourian drainage basin in agricultural products and also the capability of seasonal tourism in different areas of this drainage basin, the importance of investigating nighttime LST changes, in this regard, is undeniable. On the other hand, with the continuing increase of environmental sensitivities and the accelerating trend of continental climate in this drainage basin, it is suggested that in future research, while estimating other climatic variables, their correlations with LST are considered. This will provide more climate knowledge of the environmental changes that have occurred in this less studied drainage basin.

Keywords

Main Subjects


احمدی، م.، داداشعلی رودباری، ع. و احمدی، ح.، 1397، پایش دمای سطح زمین در گستره ایران مبتنی بر برونداد سنجنده MODIS، فصلنامه تحقیقات جغرافیایی، 33 (1)، 174-190.
اسکندری دامنه، ه.، اسکندری دامنه، ح.، خسروی، ح.، و غلامی، ح.، 1398، تحلیل و پایش خشکسالی با استفاده از شاخص پوشش­گیاهی NDVI (مطالعه موردی: حوضه غرب تالاب جازموریان)، نشریه علمی پژوهشی مرتع، 13 (3)، 475-461.
بذرافشان، ج. و رحیمی، ج.، 1393، تحلیل و پهنه­بندی ریسک وقوع یخبندان و سرماهای تشعشعی، جبهه­ای و مختلط در گستره ایران، نشریه هواشناسی کشاورزی، 2 (1)، 79-67.
حلبیان، ا.ح . و شبانکاری، م.، 1389، تحلیل همدید ارتباط پرفشار جنب حاره در تراز 600 هکتوپاسکال با بارش روزانه در ایران، تحقیقات جغرافیایی، 97 (2)، 82-47.
شکیبا، ع.، ضیائیان فیروزآبادی، پ.، عاشورلو، د. و نامداری، س.، 1388، تحلیل رابطه کاربری و پوشش اراضی و جزایر حرارتی شهر تهران، با استفاده از داده­های ETM+، فصلنامه سنجش از دور ایران، شماره اول، 39-56.
عساکره، ح.، 1390، مبانی اقلیم‌شناسی آماری، انتشارات دانشگاه زنجان، زنجان، ایران.
عطایی، ه. و یوسفی فر، ب.، 1394، بررسی روند تغییرات دمای شبانه استان کرمان و تأثیرپذیری آن از شدت تابش خورشیدی (TSI) طی نیم قرن اخیر، جغرافیا و توسعه، شماره 40، 212-195.
عطایی، ه. و فنایی، ر.، 1392، شناسایی روند تغییرات ماهانه و سالانه متوسط دمای حوضه آبریز گاوخونی طی دوره آماری 2010-1961، فصلنامه اکوبیولوژی تالاب، سال پنجم، شماره 17، 31-46.
کرینسلی، د.، 1383، کویرهای ایران و خصوصیات پالئوکلیماتولوژی آن، ترجمه عباس پاشایی، تهران-ایران.
مرادی، م.، 1395، بررسی آب‌وهواشناختی دمای سطح زمین در گستره ایران با بهره­گیری از داده­های مودیس، پایانامه دکتری، گروه جغرافیای طبیعی، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی.
مسعودیان، س. ا.، ١٣٩٠، آب وهوای ایران، انتشارات شریعه توس، مشهد-ایران.
موسوی راد، س. م.، خالقی، ف. و مرادی، ح ا.، 1398، بررسی روند تغییرات سطح آب و پوشش­گیاهی تالاب جازموریان با استفاده از سنجس از دور، پانزدهمین همایش ملی آبیاری و کاهش تبخیر، کرمان.
Anderson, M. C., Kustas,W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L. and Gao, F., 2011, Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrology and Earth System Sciences, 15, 223–239, http://dx.doi.org/10.5194/hess-15-223-2011.
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P. and Mecikalski, J. R., 1997, A two-source   time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sensing of Environment, 60, 195–216.
Dar, I., Qadir, J. and Shukla, A., 2019, Estimation of LST from multi-sensor thermal remote sensing data and evaluating the influence of sensor characteristics. Annals of GIS, 25(3), 263-281.
Das, M. and Das, A., 2020, Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST)–A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India. Urban Climate, 32, 100591.
Dissanayake, D. M. S. L. B., 2020, Land use change and Its impacts on land surface temperature in Galle city, Sri Lanka. Climate, 8(5), 65.
Eleftheriou, D., Kiachidis, K., Kalmintzis, G., Kalea, A., Bantasis, C., Koumadoraki, P. and Gemitzi, A., 2018, Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece-climate change implications. Science of the total environment, 616, 937-947.‏
Ghent, D., Veal, K., Trent, T., Dodd, E., Sembhi, H. and Remedios, J., 2019, A new approach to defining uncertainties for MODIS land surface temperature, Remote Sensing, 11(9), 1021.
Fang, B. and Lakshmi, V., 2014, Soil moisture at watershed scale: Remote sensing techniques, Journal of hydrology, 516, 258-272. https://doi.org/10.1016/j.jhydrol.2013.12.008.
Guha, S., Govil, H., Dey, A. and Gill, N., 2020, A case study on the relationship between land surface temperature and land surface indices in Raipur City, India, Geografisk Tidsskrift-Danish Journal of Geography: 1-16.
Jin, M. and Dickinson, R. E., 2010, Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letters, 5(4), 044004.
Koehler, J. and Kuenzer, C., 2020, Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data—A Review, Remote Sensing, 12(21), 3513.‏
Li, H., Sun, D., Yu, Y., Wang, H., Liu, Y., Liu, Q. and Cao, B., 2014, Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China, Remote Sensing of Environment, 142, 111-121.
Liu, X. and Chen, B., 2000, Climatic warming in the Tibetan Plateau during recent decades, International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14), 1729-1742.
Mustafa, E. K., Liu, G., Abd El-Hamid, H. T. and Kaloop, M. R., 2019, Simulation of land use dynamics and impact on land surface temperature using satellite data. GeoJournal: 1-19.
Mostovoy, G. V., King, R. L., Reddy, K. R., Kakani, V. G. and Filippova, M. G., 2006, Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi, GIScience & Remote Sensing, 43(1), 78-110.
Oyler, J. W., Dobrowski, S. Z., Holden, Z. A. and Running, S. W., 2016, Remotely sensed land skin temperature as a spatial predictor of air temperature across the conterminous United States, Journal of Applied Meteorology and Climatology, 55(7), 1441-1457.
Salama, M. S., Van der Velde, R., Zhong, L., Ma, Y., Ofwono, M. and Su, Z., 2012, Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008, Climatic Change, 114(3), 769-781.
Shen, X., Liu, B., Jiang, M. and Lu, X., 2020, Marshland loss warms local land surface temperature in China. Geophysical Research Letters, 47(6), e2020GL087648.
Stone, B., Vargo, J. and Habeeb, D., 2012, Managing climate change in cities: Will climate action plans work? Landscape and Urban Planning, 107(3), 263-271.
Wan, Z. and Dozier, J., 1996, A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on geoscience and remote sensing, 34(4), 892-905.
Wan, Z., Zhang, Y., Zhang, Q. and Li, Z. L., 2004, Quality assessment and validation of the MODIS global LST. International Journal of Remote Sensing, 25, 261–274, https://doi.org/10.1080/0143116031000116417.
Weng, Q., Lu, D. and Schubring, J., 2004, Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies, Remote sensing of Environment, 89(4), 467-483.
Zhou, L., Dickinson, R. E., Tian, Y., Jin, M., Ogawa, K., Yu, H. and Schmugge, T., 2003, A sensitivity study of climate and energy balance simulations with use of satellite‐derived emissivity data over Northern Africa and the Arabian Peninsula, Journal of Geophysical Research: Atmospheres, 108(D24).
Zhou, W., Huang, G. and Cadenasso, M. L., 2011, Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes, Landscape and urban planning, 102(1), 54-63.