Allaire, G., Jouve, F. and Toader, A.-M., 2002, A level-set method for shape optimization. C R Acad Sci., Paris Ser I, 334, 1–6.
Allaire, G., Jouve, F. and Toader, A.-M., 2004, Structural optimization using sensitivity analysis and a level-set method. J Comput Phys; 194, 363–93.
Aghasi, A., Kilmer, M. and Miller, E. L., 2011 Parametric level set methods for inverse problems. SIAM Journal on Imaging Sciences, 4(2), 618–650.
Belytschko, T., Xiao, SP. and Parimi, C., 2003, Topology optimization with implicitly function and regularization. Int J Numer Method Eng; 57, 1177–96.
Ben Hadj Miled, M. K. and Miller, E.L., 2007, A projection-based level-set approach to enhance conductivity anomaly reconstruction in electrical resistance tomography, Inverse Problems, 23, 2375–2400.
Berger, M.S., 1977, Nonlinearity and Functional Analysis, Academic Press, New York, London.
Bernard, O., Friboulet, D., Th´ evenaz, P. and Unser, M., 2009, Variational B-spline level-set: A linear filtering approach for fast deformable model evolution, IEEE Trans. Image Process., 18, 1179–1191.
Blakely, R. J., 1996, Potential theory in gravity and magnetic applications. Cambridge university press.
Chan, T.F. and Vese, L.A., 2001, Active contours without edges, IEEE Trans. Image Process. 10, 266-277.
Charles, A., 1984, Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. In Approximation theory and spline functions, pages 143–145.
Dorn, O. and Lesselier, D., 2006, Level set methods for inverse scattering, Inverse Problems, 22, R67–R131.
Feng, H., Karl, W.C. and Castanon, D., 2003, A curve evolution approach to object-based tomographic reconstruction, IEEE Trans. Image Process., 12, 44–57.
Gage, M. E., 1983, An isoperimetric inequality with applications to curve shortening. Duke Mathematical Journal, 50(4), 1225-1229.
Grant, F. S. and West, G. F., 1965, Interpretation theory in applied geophysics, McGraw, 70, 39-43.
Isakov, V., Leung, S. and Qian, J., 2011, A fast local level set method for inverse gravimetry: Communications in Computational Physics, 10, 1044–1070.
Isakov, V., Leung, S. and Qian, J. 2013, A three-dimensional inverse gravimetry problem for ice with snow caps: Inverse Problems and Imaging, 7, 523–544, doi: 10.3934/ipi.
Kadu, A., Van Leeuwen, T. and Mulder, W., 2017, Parametric level-set full-waveform inversion in the presence of salt bodies. In SEG Technical Program Expanded Abstracts 2017 (pp. 1518-1522). Society of Exploration Geophysicists.
Li, W. and Leung, S., 2013, A fast local level set adjoint state method for first arrival transmission traveltime tomography with discontinuous slowness: Geophysical Journal International, 195, 582–596, doi: 10.1093/gji/ ggt244.
Li, W., Leung, S. and Qian, J., 2014, A level-set adjoint-state method for crosswell transmission-reflection traveltime tomography: Geophysical Journal International, 199, 348–367, doi: 10.1093/gji/ggu262.
Micchelli Charles, A., 1986, Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constructive approximation 2.1, 11-22.
Mulder, W. A. , Osher, S. and Sethian, J. A., 1992, Computing interface motion in compressible gas dynamics. Journal of Computational Physics, 100(2), 209–228.
Ngo, T. A., Lu, Z. and Carneiro, G., 2017, Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical image analysis, 35, 159-171.
Osher, S. and Fedkiw, R. P. 2001, Level set methods: an overview and some recent results. Journal of Computational Physics, 169(2), 463–502.
Osher, S.J. and Santosa, F., 2001, Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum. J Comput Phys; 171, 272–88.
Paragios, N., Faugeras, O., Chan, T. and Schnoerr, C., (Eds.), 2005, Variational, Geometric, and Level Set Methods in Computer Vision: Third International Workshop, VLSM 2005, Beijing, China, October 16, 2005, Proceedings (Vol. 3752). Springer.
Theillard, M., Djodom, L. F., Vié, J. L. and Gibou, F., 2013, A second-order sharp numerical method for solving the linear elasticity equations on irregular domains and adaptive grids–application to shape optimization. Journal of Computational Physics, 233, 430-448.
Tinós, R. and Júnior, L. O. M., 2009, Use of the q-Gaussian function in radial basis function networks. In Foundations of Computational Intelligence Volume 5 (pp. 127-145). Springer, Berlin, Heidelberg.
Villegas, R., Dorn, O., Moscoso, M., Kindelan, M. and Mustieles, F., 2006 Simultaneous characterization of geological shapes and permeability distributions in reservoirs using the level set method, in Proceedings of the SPE Europec/EAGE Annual Conference and Exhibition.
Wang, M.Y. and Wang, X.M., 2004, PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization. Comput Model Eng Sci; 6, 373–95.
Wendland, H., 1995, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1), 389–396.
Zhang, K., Zhang, L., Lam, K. M. and Zhang, D., 2015, A level set approach to image segmentation with intensity inhomogeneity. IEEE transactions on cybernetics, 46(2), 546-557.
Zhao, H.K., Chan, T., Merriman, B. and Osher, S., 1996, A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179–195.
Zhdanov, M.S., 2002, Geophysical Inverse Theory and Regularization Problems, Elsevier Science, Amsterdam.