Abdi, N., Azmoodeh Ardalan, A. R. and Karimi, R., 2016, Evaluation of Iran Ionosphere Model Based on GPS Data Processing, JGST, 5 (4), 37-47.
Abdi, N., Azmoudeh Ardalan, A. R. and Karimi, R., 2018, Combination of GPS and Satellite Altimetry Observations for Local Ionosphere Modeling Over Iran, JGST, 7(3), 109-125.
Akhoondzadeh, M., 2014, Investigation of GPS-TEC measurements using ANN method indicating seismo-273 ionospheric anomalies around the time of the Chile (Mw = 8.2) earthquake of 01 April 2014, Advance in space research, 54(9), 1768-1772.
Amerian, Y., Mashhadi Hossainali, M., Voosoghi, B. and Ghaffari Razin, M. R., 2010, Tomographic reconstruction of the ionospheric electron density in term of wavelets, Journal of Aerospace Science and Technology, 7(1), 19–29.
Amerian, Y., Voosoghi, B. and Mashhadi Hossainali, M., 2013, Regional Ionosphere Modeling in Support of IRI and Wavelet Using GPS Observations, Acta Geophysica, 61(5), 1246-1261, DOI: 10.2478/s11600-013-0121-5.
Bilitza, D. and Reinisch, B. W., 2008, International Reference Ionosphere 2007: Improvements and new parameters, Advances in Space Research, 2018, 42 (2008), 599–609.
Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A. and Radicella, S. M., 2007, Calibration errors on experimental slant total electron content (TEC) determined with GPS, J Geod., 2007, 81(2), 111–120. doi: 10.1007/s00190-006-0093-1.
Etemadfard, H. and Hossainali, M. M., 2016, Application of Slepian Theory for Improving the Accuracy of Global Ionosphere Models in the Arctic Region, J. Geophys. Res. Space Physics, 121(3), 2583-2594.
Feizi, R., Voosoghi, B. and Ghaffari Razin, M. R., 2020, Regional modeling of the ionosphere using adaptive neuro-fuzzy inference system in Iran. Advances in Space Research 65(2020), 2515–2528.
Ghaffari Razin, M. R. and Voosoghi, B., 2017, Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content, Journal of Atmospheric and Solar–Terrestrial Physics, http://dx.doi.org/10.1016/j.jastp.2016.09.005, 149 (2017), 21–30.
Ghaffari Razin, M. R. and Moradi, A. R., 2020, Temporal extrapolation of TEC using WNN during 2007–2018 and comparison against GIM, IRI2016 and Kriging, Advances in Space Research, https://doi.org/10.1016/j.asr.2020.11.033.
Haykin, S., 1994, Neural Networks, a comprehensive Foundation, Macmillan College Publishing Company, New York, 1994.
Jang, J.-S. R, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685.
Kleusberg, A. and Teunissen, P. J. G., 1998, GPS for geodesy, Springer, 1998.
Liu, Z. and Gao, Y., 2003, Ionospheric TEC predictions over a local area GPS reference network, GPS Solutions, 8(1), 23–29.
Leandro, R. F. and Santos, M. C., 2007, A neural network approach for regional vertical total electron content modeling, Stud. Geophys. Geod, 51(2), 279-292.
Mars, P., Chen, J. R. and Nambiar, R., 1996, Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications”, CRC Press, Boca Raton, Florida, 1996.
Nava, B., Coisson, P. and Radicella, S. M., 2008, A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial, 2008, Physics, doi:10.1016/j.jastp.2008.01.015.
Sabzehee, F., Farzaneh, S., Sharifi, M. A. and Akhoondzadeh, M., 2018, TEC Regional Modeling and prediction using ANN method and single frequency receiver over IRAN, ANNALS OF GEOPHYSICS, 61(1).
Schaer, S., 1999, Mapping and Predicting the Earths Ionosphere Using the Global Positioning System, PhD dissertation, Astronomical Institute, University of Berne, Switzerland, 205.
Seeber, G., 2003, Satellite Geodesy, Foundations, Methods and Application”, Walter de Gruyter, Berlin and New York, 531.
Sharifi, M. A. and Farzaneh, S., 2015, Regional TEC dynamic modeling based on Slepian functions, Advances in Space Research, 56 (5), 907-915.
Simpson, P. K., 1990, Artificial neural systems: foundations, paradigms, applications, and implementations, Pergamon Press, New York, 1990.
Takagi, T. and Sugeno, M., 1985, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116-132.
Tebabal, A., Radicella, S. M., Damtie, B., Migoya-Orue, B., Nigussie, M. and Nava, B., 2019, Feed forward neural network based ionospheric model for the East African region, Journal of Atmospheric and Solar–Terrestrial Physics, 2019, 191(105052).
Vapnik, V., 1995, Nature of statistical learning theory”, Springer, New York.
Yeganeh, B., Motlagh, MSP, Rashidi, Y., Kamalan, H., 2012, Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model, Atmos Environ, 55:357–365.
Yilmaz, A., Akdogan, K. E. and Gurun, M., 2009, Regional TEC mapping using neural networks, Radio Sci, 2009, 44 (3), 1-16, doi:10.1029/2008RS004049.
Zhang, Z., Pan, S., Gao, C., Zhao, T. and Gao, W., 2019, Support Vector Machine for Regional Ionospheric Delay Modeling, Sensors, 2019, 19, 2947; doi:10.3390/s19132947.