Post Processing of WRF Model Output by Cokriging Method for Minimum and Maximum Temperature in Iran

Document Type : Research Article

Authors

Assistant Professor, Atmospheric Sciences and Meteorological Research Center (ASMERC), Tehran, Iran

Abstract

Weather forecasting and monitoring systems based on numerical weather forecasting models have been increasingly used to manage issues related to meteorology and agriculture. Using more accurate minimum and maximum temperature forecasts can be helpful in this regard. But systematic and random errors in the model affect the accuracy of forecasts. In this study, the model errors during the 5 and 14 days training period in the same climate areas on the points of the network where the observations are available are calculated.Then the errors are generalized on all points of the network using the cokriging interpolation method. This, preserves the model forecasts for other points of the network and only error values are applied to them. To better evaluate the model, the spatial and temporal distribution of the maximum and minimum temperature forecast errors are also investigated in the country. Observed daily maximum and minimum temperatures data from 560 meteorological stations for the period 1/11/2019 to 1/2/2021 are used to evaluate the WRF model. The WRF model is run daily at 12UTC, with a forecast time of 120 hours. And first 12 hours of each run is consider as the model spin-up and is not used in errors calculation. In order to correct the maximum and minimum temperature forecast errors for next three days (forecasts of 36, 60 and 84 hours), the forecasts for each day in the period of 11/1/ 2019 to 1/2/2021, is extracted from the model outputs. In order to evaluate the error correction method, the skill score index is used. The validation results of the error correction method shows that the absolute mean error value, correlation coefficient and RMSE are improved after the error correction compared to results that were before the error correction. This shows that the error correction method can be used for other network points that do not contain observational data. The results shows that the RMSE of the raw model maximum (minimum) temperatures forecasts for next three days is approximately 6 degrees Celsius (5 degrees Celsius), which after error correction reaches 2 degrees Celsius (4 degrees Celsius). Also the value of correlation coefficient, after correcting for the model error, has a significant increase compared to the raw model output. The average skill score for the raw minimum and maximum temperature forecast for more than 50% of the days is more than -1 and -1.9, respectively, but after correction, the model skill scores become closer to one and for more than 75 percentage of days that reach above zero. Without exception, all climatic regions after error correction have a higher skill score than before error correction, so that the model skill score for most climatic regions after error correction reaches above zero for more than 75% of the days. Before error correction, the warm semi-humid zone has the lowest average skill score for forecasting maximum and minimum temperatures among climatic zones, but after error correction it reaches the highest value among other zones. In general, for areas with hot and dry climates, the raw output skill score for predicting the minimum temperature in July, August, and September is minimized. The 14-day error correction method did not improve the modeling skill score much compared to the 5-day error correction method, and they acted almost similarly. In areas with high elevation gradient, the model error increases. In general, model underestimates the maximum and minimum temperatures in most areas. Knowing the spatial and temporal distribution of model forecast error can be helpful for researchers to have an overview of the areas (and months) where the model forecast error is high.

Keywords

Main Subjects


افشاری، ف.، 1393، پیش‌بینی عددی دمای دو متری با استفاده از برونداد مدل WRF بر روی ایران. پایان­نامه کارشناسی ارشد، وزارت علوم، تحقیقات و فناوری - دانشگاه هرمزگان - دانشکده علوم پایه.
آزادی، م.، جعفری، س.، میرزایی، ا. و عربلی، پ.، 1387، پس‌پردازش برونداد مدل میان مقیاس MM5 برای دمای بیشینه و کمینه با استفاده از فیلتر کالمن، مجله فیزیک زمین و فضا 34 (1)، 45–61.
آزادی، م.، شیرغلامی، م.، حجام، س. و صحراِیان، ف.، 1390، پس‌پردازش برونداد مدل WRF برای بارش روزانه در ایران، مجله تحقیقات منابع آب، 7 (3)، 71-81.
بهمن‌زاده، ف.، قادر، س.، حق‌شناس، س. و یازجی، د.، 1398، بررسی موردی عملکرد مدل WRF جهت پیشیابی میدان باد تراز 10 متر و دمای تراز دومتر با استفاده از داده‌های ماهوارهای و ایستگاه‌های همدیدی در منطقه دریای عمان و دریای عرب، م. فیزیک زمین و فضا، 45(2)، 441-458.
پیله وران، ر. و اکبری، ز.، 1397، پس‌پردازش برونداد مدل WRF برای دماهای بیشینه و کمینه در استان لرستان. نخستین همایش ملی «آینده ­نگاری راهبردی در حوزه علوم جغرافیایی و مطالعات شهری- منطقه‌ای».
شکوهی، م.، ثنائی نژاد، س.ح. و بنایان اول، م.، 1397، ارزیابی شبیه‌سازی دما و بارشِ مدل‌های اقلیمیCMIP5  در مطالعات منطقه‌ای تغییر اقلیم (مطالعه موردی: مناطق عمده تولید گندم دیم در ایران). آب و خاک 32، 1013–1014.
مرادی، م. و مرتضی‌پور، س.، 1397، پس‌پردازش خروجی مدل WRF به روش میانگین لغزان برای دما، دمای نقطه شبنم، دمای بیشینه و دمای کمینه، در ایستگاه هواشناسی فرودگاه رشت. هواشناسی و علوم جوّ 1، 190–201.
مؤسسه تحقیقات خاک و آب، سازمان هواشناسی کشور، 1398، تهیه نقشه خرد اقلیم کشاورزی کشور، https://agro.irimo.ir/far/wd/
نصراصفهانی، م.، یزدان پناه، ح. ا.، نصراصفهانی، م.، 1398، ارزیابی مدل WRF برای پیش‌بینی دما و رخداد سرمازدگی در حوضه آبریز زاینده‏ رود. پژوهش‌‌های جغرافیای طبیعی 51، 163–182.
Box, G. E. and Meyer, R. D., 1986, An analysis for unreplicated fractional factorials. Technometrics, 28, 11-18.
Dars, G. H., Strong, C., Kochanski, A. K., Ansari, K. and Ali, S. H., 2020, The Spatiotemporal Variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations. Applied Sciences 10(5), 1765.
Goovaerts, P., 1997, Geostatistics for natural resources evaluation. Oxford University Press on Demand.
Goovaerts, P., 1999, Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89, 1–45.
Hacker, J. P. and Rife, D. L., 2007, A Practical Approach to Sequential Estimation of Systematic Error on Near-Surface Mesoscale Grids. Weather and Forecasting 22, 1257–1273.
Heredia, M. B., Junquas, C., Prieur, C. and Condom, T., 2018, New Statistical Methods for Precipitation Bias Correction Applied to WRF Model Simulations in the Antisana Region, Ecuador. Journal of Hydrometeorology 19, 2021–2040.
Isaaks, E. H., Isaaks, D. A. E. S. E. H., Srivastava, R. M. and Firm, K., 1989, Applied Geostatistics, illustrate. ed. Oxford University Press.
Jeong, J. and Lee, S.-J., 2018, A Statistical Parameter Correction Technique for WRF Medium-Range Prediction of Near-Surface Temperature and Wind Speed Using Generalized Linear Model. Atmosphere . https://doi.org/10.3390/atmos9080291.
López Gómez, J., Troncoso Pastoriza, F., Granada Álvarez, E. and Eguía Oller, P., 2020, Comparison between Geostatistical Interpolation and Numerical Weather Model Predictions for Meteorological Conditions Mapping. Infrastructures, 5(2), 15.
Mass, C. F., Baars, J., Wedam, G., Grimit, E. and Steed, R., 2008, Removal of systematic model bias on a model grid. Weather and Forecasting 23, 438–459.
McCollor, D. and Stull, R., 2008, Hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain. Weather and forecasting 23, 131–144.
Mohammadi, S. A., Azadi, M. and Rahmani, M., 2017, Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts. Journal of Meteorological Research 31, 791–799.
Müller, O. V, Lovino, M. A. and Berbery, E. H., 2016, Evaluation of WRF model forecasts and their use for hydroclimate monitoring over southern South America. Weather and Forecasting 31, 1001–1017.
Robertson, G. P., 2008, GS+:“Geostatistics for the Environmental Sciences”, Gamma Design Software, Plainwell, Michigan USA. Pdf document available for free at: https://geostatistics. com/files/GSPlusUserGuide. pdf.
Samalot, A., Astitha, M., Yang, J. and Galanis, G., 2019, Combined Kalman Filter and Universal Kriging to Improve Storm Wind Speed Predictions for the Northeastern United States. Weather and Forecasting 34, 587–601.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. and Powers, J. G., 2008, A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.
Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106, 7183–7192.
Termonia, P. and Deckmyn, A., 2007, Model-inspired predictors for model output statistics (MOS). Monthly weather review 135, 3496–3505.
Valappil, V. K., Temimi, M., Weston, M., Fonseca, R., Nelli, N. R., Thota, M. and Kumar, K. N., 2020, Assessing Bias correction methods in support of operational weather forecast in arid environment. Asia-Pacific Journal of Atmospheric Sciences 56, 333–347.