Paleostrees analysis and Evaluation of Movement potential of Dochah Fault, Central Iran

Document Type : Research Article

Authors

1 M.Sc. Graduated, School of Geology, College of Science, University of Tehran, Tehran, Iran

2 Assistant Professor, School of Geology, College of Science, University of Tehran, Tehran, Iran

3 Associate Professor, School of Geology, College of Science, University of Tehran, Tehran, Iran

4 Assistant Professor, Department of Geology, Faculty of Science, Tarbiat Modares University, Tehran, Iran

5 Instructor, School of Geology, College of Science, University of Tehran, Tehran, Iran

6 M.Sc. Student, Department of Geology, Faculty of Science, Tarbiat Modares University, Tehran, Iran

Abstract

Qom region is one the significant area insight of geological features in Central Iran. Several researches have studied about the Cenozoic strata in terms of sedimentology, Stratigraphy and paleontology but, few structural detail data are available from this area. The most important exposure of the rock unites at the west of the Qom city is related to the Eocene volcanics, Lower Red, Qom and Upper Red Formations. Major structures at this area are Kamar Kuh and Mil anticlines, Yazdan syncline, Dochah and Sefid Kuh faults. Dochah Fault with E-W trending and ~70° dipping to the northward placed at the northwest termination of Qom-Zefreh Fault as a recent sinistral strike slip fault. This fault with ~15 km length separate Mil anticline from Yazdan syncline and eliminates the southern limb of Dochah overturned anticline. In this study, we focused on the Dochah Fault damaged zone in order to paleostress analysis using geometric and kinematic characteristics of fault slip data, which is achieved from the deformed Qom and Upper Red Formations. For this purpose, 100 fault slip data with precise and accurate geometric and kinematic characteristics have been measured in the field and analyzed with software Dasiy and Rotax methods. In order to determine the sense of shearing of the faults, the criteria of Petit (1987) and Doblas (1998) have been used. While the trend of the major structures is east-west but, most of slip data is related the transverse oblique slip faults, because the Dochah Fault passes through the soft materials of Lower Red Formation and consequently it is not possible or too hard to find the slicken line. Meanwhile, our results indicate the magnitudes of the axes of the maximum and minimum principal stress (σ1, σ3) as 030/05 and 285/05, Geometric and kinetic structural analysis related to the dochah fault and according to the spatial arrangement of the main stress axes indicate the readiness of the left-hand section on the right-hand section, especially in the western parts of the region (Caspian) attributed. oblate shape of field stress ellipsoid shape (R~0.7). Based on the field stress ellipsoid shape and the rotation of the fault data regarding the Anderson's theory for the compressive stress regime, the stress transition trajectory map has been prepared. The arrangement of maximum stress trajectories is consistent with the general stress regime in the Iranian crust and is consistent with the activity of the Dochah Fault. Different criteria have been proposed to evaluate the activity of a fault in terms of seismicity. In experimental studies, there are various estimates for selection of the part of the fault that the movement rediscovers for each tectonic seismic zone. Here, the possibility of moving Dochah Fault has been estimated by the method of Lee et al. (1997). In this method, the angular relationship between maximum principal stress axis (σ1) and the pole of the fault plane considered in order to evaluate the Fault Movement Potential (FMP) based on equation “FMP=f (G, σ)”. The angle between maximum principal stress axis (σ1) and the pole of Dochah Fault (θ) is equal to ~40° and so FMP=0.33 based on equation FMP= (θ-30°) ⁄ (30°) if θ∈[30°,60°]. This value of FMP indicates the low seismic potential of Dochah fault for movement and creating earthquakes.

Keywords

Main Subjects


حاجیان، ج. و امامی، م. ه.، 1370، چهارگوشه زمین‌شناسی 2500000:1، قم، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
حسامی، خ.، جمالی، ف. و طبسی، ه.، 1382، نقشه گسل های فعال ایران، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله.
زمانی پدرام، م. و کریمی، ح. ر.، 1395، نقشه‌ی زمین‌شناسی 25000:1 مزرعه قشلاق میل، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
عجمی، م.، 1399، تحلیل هندسی-جنبشی وتنش دیرین در منطقه دوچاه، میل و لاچینگ، غرب قم. پایان‌نامه کارشناسی‌ارشد، دانشگاه تهران، 174 صفحه.
Angelier, J., 1979, Determination of the mean principal direction of stresses for a given fault population.Tectonophysics, 56, 17-26.
Angelier, J., 1990, Inversion of field data in fault tectonics to obtain the regional stress. III. A new rapid direct inversion method by analyticalmeans. Geophys. J. Int., 103, 363- 376. Angelier, J., 1994- Fault Slip Analysis and Paleostress reconstruction In Hancock, P. l. 1994. Continental Deformation, pergamon press Ltd. chaper J., 4,pp. 53-100.
Angelier, J., 1994, Fault slip Analysis & paleostress reconstruction edited by Hancock,P.L.1994 -Continental Deformation, pergamon press Ltd.Chapter, 4, 53-100.
Doblas, M., 1998, Slickenside kinematic indicators. Tectonophysics 295, 187–197.
Khodaparast, S., Madanipour, S., Nozaem, R. and Hessami, K. 2020a, Structural evidence on strike slip Kinematic inversion of the Kushk-e-Nosrat Fault zone, Central Iran. Geopersia, 10, 195–209.
Khodaparast, S., Madanipour, S., Enkelmann, E., Nozaem, R. and Hessami, K., 2020b, Fault inversion in central Iran: evidence of post Pliocene intracontinental left lateral kinematics at the northern Iranian Plateau margin, Journal of Geodynamics.
Lee, C. F., Hou, J. J. and Ye, H., 1997, The movement potential of the major faults in Hong Kong area, Episodes, 20(4), 227. 231.
Lisle, R. J., 1998, Romsa: a Basic program for palaeostress analysis using fault-striation data. Computers, Geosciences, 14, 255–259.
Lokajicek, T., Spicak, A. and Waniek, L., 1988, Tectonic stress orientationand the seismic regime of a single fault: Tectonophysics. 152, 297-302.
Morley, C., Kongwung, B., Jalalpour, A., Abdolghafourian, M. and Hajian, M., 2009, structural development of a major Cenozoic basin and transpressionsl belt in central Iran: The central Basin in the Qom-Saveh area. Geosphere, 5, 325– 362.
Moumeni, M., Nozaem, R. and Dehbozorgi, M., 2021, Quantitative assessment of the relative tectonic activity using the analytical hierarchy process in the northwestern margin of the Lut Block, Central Iran, Journal of Asian Earth Sciences,Volume 206, 2021,104607,
Nemcock, M. and L isle, R. J., 1995, A Stress Inversion Procedure for Polyphase Fault Slip Data Sets, Structural Geology Journal of, 17(10), 1453-1445.
Nogole-Sadat, M.A.A., 1985, Les zones de decrochmentel Les virgations in Iran, consequences des resultats de LL de la region de Qom. Geol Surv Iran Rep 1–201.
Petit, J. P., 1987, Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology 9, 597–608.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R. and Karam, G., 2006, GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111, B05411.
Sato, k. and Yamaji, A., 2006, Uniform distribution of points on a hypersphere for improving the resolution of stress tensor inversion. Journal of structural geology, 28(6), 972-979.
Salvini, F., 2004, Daisy 4.1. The Structural Data Integrated System Analyzer. Available at Software University of Roma Tre, Roma.
Salvini, F. and Vittori, E., 1982, Analisi strutturale della linea Olevano-Antrodoco-Posta (Ancona-Anzio Auct.): metodologia di studio delle deformazioni fragili e presentazione del tratto meridionale. Memorie della Societa Geologica Italiana 24, 337–355.
Salvini, F., Billi, A. and Wise, D. U., 1999, Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy. J. Struct. Geol. 21, 1731–1749.
Tadayon, M., Rossetti, F., Zattin, M., Calzolari, G., Nozaem, R., Salvini, F. and Khodabakhshi, P., 2019, The long-term evolution of the Doruneh Fault region M. Moumeni et al. Journal of Asian Earth Sciences 206 (2021) 104607 17 (Central Iran): A key to understanding the spatio-temporal tectonic evolution in the hinterland of the Zagros convergence zone. Geol. J. 54, 1454–1479.
Vernant, P. H., Nilforoushan, F., Chery, J., Bayer, R., Dlamour, Y., Masson, F., Nankali, H., Ritz, J. F., sedighi, M. and Tavakoli, F., 2004a, Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth and planetary science letters 223: 177-185.
Vernant, Ph., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayser, R., Tavakoli, F. and Chery, J., 2004b, persent day curstal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and nortern Oman, Geophyscial Journal International, 157(1) ,381-398.
Yamaji, A., 2000, The multiple inverse methods: a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology 22, 441-4.
Wise, D. U. and Vincent, R. J., 1965, Rotation axis method for detecting conjugate planes in calcite petrofabric. Am. J. Sci. 263, 289–301.