The QBO effect on the wave breaking over the east of mediterranean and west Asia: Critical Latitude Aspect

Document Type : Research

Authors

1 Ph.D. Graduated, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran

2 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran

Abstract

In the present study, using the ERA-INTERIM reanalysis data for geopotential height, horizontal wind speed and relative vorticity at 300, 200, 150, 100 and 50hPa levels, the quasi geostrophic potential vorticity, the quasi geostrophic potential vorticity gradient ,the wave activity and wave activity flux for cyclonic and anticyclonic Rossby wave breaking events that occurred over Europe during the winter time 1979-2018 in the westerly and easterly phase of quasi biennial Oscillation, were calculated and analyzed. The mechanism of Rossby wave breaking during five days before to five days after the wave break were analyzed. The Results show that in the anticyclonic breaking event over west Asia in the QBOe, the poleward displacement of jet in the upstream of trough to upper latitude over the Europe is more consistent than for the QBOw. Whereas in the cyclonic break in the westerly phase, jet on the upstream of trough over the west of Mediterranean sea displace to lower latitude over the Europe more than that pf the easterly phase. Therefore in the anticyclonic wave breaking over the west Asia in the QBOe compared that of to QBOw, the amplitude of the waves increase. The QBOe in the anticyclonic breaking causes increasing altitude on the upstream trough over the Europe and decreasing altitude on the downstream trough over the east Europe and Mediterranean and also causes increasing altitude over the east of Atlantic ocean. In the cyclonic breaking, QBOe causes increasing altitude on upstream of trough over the west of Mediterranean and decreasing altitude on the downstream of trough over the east of Mediterranean region.
In the anticyclonic wave breaking on the west Asia and east Mediterranean in the QBOe, anomaly jets velocity and following the formation of critical latitude on north Europe is stronger than the critical latitude in the QBOw. The QBOe causes poleward displacement the jets and critical latitude as compared to that of the QBOw. In the anticyclonic wave breaking over west Asia, formation of extended ridge over Atlantic ocean and Europe causes settlement of the narrow trough on the west Asia. In the QBOe, the jet intensifies over north of Europe and critical latitude on the upstream of trough form stronger, QBOw. Equatorward wave activity flux due to anticyclonic breaking in the QBOe is more than that of the QBOw. Therefore the anticyclonic wave breaking in QBOe is stronger than QBOw.   
In the cyclonic waves breaking, jets on the upstream of trough over Europe and jet on the downstream of trough over east Mediterranean are formed across north westerly- south easterly. In the QBOe, jet on the upstream of trough intensifies on the upper latitude as compared to the QBOw. Following this the critical latitude have poleward displacement. In the QBOe, north westerly-south easterly slope of trough is more than QBOw and the trough on the Mediterranean and east Europe has lower altitude compared to that for the QBOw. The poleward wave activity flux due to cyclonic wave breaking is more in QBOe compared to that for the QBOw. Therefore the cyclonic wave breaking is stronger in QBOe compared to that for the QBOw.
Whereas in the anticyclonic wave breaking over west Mediterranean in the QBOw compared to that for the QBOe and the meridional gradient of quasi geostrophic potential vorticity is stronger and meridional wave activity flux is more. Therefore the anticyclonic wave breaking over west Mediterranean in the QBOw is stronger compared to that for the QBOe.

Keywords

Main Subjects


اسبقی، ق.، جغتایی، م. و محب الحجه، ع.، 1394الف، بررسی اثر نوسان شبه‌‌‌دوسالانهQBO  بر ساختارتاوه قطبی‌ در ابتدای زمستان، کنفرانس ژئوفیزیک ایران، 16، 362-366.
اسبقی، ق.، جغتایی، م. و محب الحجه، ع.، 1394ب، بررسی اثر نوسان شبه‌‌‌دوسالانه (QBO) بر وردسپهر برون حاره­ای در اوایل زمستان از دیدگاه انرژی، نشریه پژوهش­های اقلیم­شناسی، سال ششم، 23-24.
برهانی، ر. و احمدی گیوی، ف.، 1397، تحلیل آماری-دینامیکی تاشدگی­های وردایست در منطقه جنوب‌غرب آسیا در سال‌های 2000-2015، م. ژئوفیزیک ایران، 2، 127-146.
سیفی، ز.، میررکنی، س. م.، جغتایی، م. و محب‌الحجه، ع.، 1397، بررسی اثر نوسان شبه‌‌‌دوسالانه QBO برتاوه قطبی روی پوشن سپهر پایینی و میانی ، کنفرانس ژئوفیزیک ایران، 20، 609-607.
خدادی، م. م.، آزادی، م.، مرادی، م. و رنجبر، ع.، 1399، اثر نوسان شبه‌‌‌دوسالانه بر شکست امواج راسبی روی اروپا و غرب آسیا از دیدگاه فعالیت موج.، م. فیزیک زمین وفضا، 46(3)، 621-642.
Andrews, D. G., Holton, J. R. and Leovoy, C. B., 1987, Middle Atmosphere Dynamics, International Geophysics Series., 6, 125-136.
Abatzoglou, T. J. and Magnusdottir, G., 2006, Planetary Wave Breaking and Nonlinear Reflection: Seasonal Cycle and Interannual Variability. J.Geophys.Res., 19, 6139-6159.
Asbaghi, G., Joghataei, M. and R. Mohebalhojeh, A., 2016, Impacts of the QBO on the North Atlantic and Mediterranean storm tracks: An energetic perspective. J. Geophys. Res., 44. 1-8.
Baldwin, M. P. and Gray, L. J. Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C. and Sato, K., 2001, The quasi‐biennial oscillation., J.Geophys.Res., 39, 2, 179-229.
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A. and Waliser., D. E., 2003, On the relationship between the QBO and tropical deep convection., 2003, J. Climate, 16, 2552–2568.
Dunkerton, T. J. and Baldwin, M. P., 1991, Quasi-biennial modulation of planetary-wave  fluxes in the Northern Hemisphere winter. J. Atmos. Sci., 48, 1043–1061.
Esler, J. G. and Haynes., P.H., 1999, Mechanisms for Wave Packet Formation and Maintenance in Quasigeostrophic Two-Layer Model. J. Atmos. Sci. Vol. 56, No. 15.
Garfinkel, C.I. and Hartmann., D. L., 2011, The Influence of the Quasi-Biennial Oscillation on the Troposphere in Winter in a Hierarchy of Models., J. Atmos.Sci., Vol. 68, 1273-1289.
Holton, J. R. and Tan, H.-C., 1980, The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208.
Holton, J. R., 2004, An Introduction Dynamic Meteorology. International Geophysics Series., 6, 140-181.
Haynes, P. H. and McIntyre., M. E., 1987, On the Representation of Rossby Wave Critical Layers and Wave Breaking in Zonally Truncated Models, J Atmos Sci., 44, 17.
Hansen, F., Matthes. K. and Wahl, S., 2016, Tropospheric QBO–ENSO Interactions and Differences between the Atlantic and Pacific. J. Climate., 29(4). 1353-1368.
Kalnay, E., kanamitsu, M., Kistler, R., Collins, W., Weawen, D., Gandin, L., Irrdel, M., Saha, S., White, G., Woolen, J., Zho, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D, 1996, the NCEP/NCAR 40-year reanalysis project, Bull.am.Meteorol. Soc., 77, 437-72.
McIntyre, M. E. and Palmer., T. N., 1983, breaking planetary waves in the stratosphere. Nature. Vol. 305.593-600.
Magnusdottir, G. and Haynes., H., 1996, Waves activity diagnostics applyied to barocilinc wave Cycles. J. Atmos. Sci., Vol. 53, No. 16, 2317-2353.
Magnusdottir, G. and Haynes, P. H., 1998, Reflection of Planetary Waves in Three-Dimensional Tropospheric Flows. J. Atmos. Sci., 56(4), 652-669.
Martius, O., Schwarz, C. and Davies., H. C. 2007, Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2, classification. J. Atmos. Sci., 64, 2576–25929.
O.sullivan, D. and Young., R. E., 1992, Modeling the quasi-biennial oscillation effect on the winter stratospheric circulation. J. Atmos.Sci., 49, 24, 2437-2448.
Palmer, T. N., 1981, property of eliassen-palm flux for planetry scale motion. J. Atmos. Sci., 39, 992-997.
Riviere, G. and Orlanski, I., 2007, Characteristics of the Atlantic Storm-Track Eddy Activity and Its Relation with the North Atlantic Oscillation., J. Atmos.Sci., 64, 241-266.
Shepherd, T. G., 2014, Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience., 7, 703-708.
Solomon, A. and Polvani, L. M., 2016, Highly significant responses to anthropo[n,ggenic forcings of the midlatitude jet in the Southern hemisphere. Journal of Climate., 29 (9), 3463–3470.
Troncroft, C. D. and Hoskins, B. J. and McIntyre., M. E.,1993, Two paradiags of baroclinic wave life-cycle beahaviour., Quart. J. Roy. Meteor. Soc., 119,17-55.
Vallis, G. K., 2017, Atmospheric and Oceanic Fluid Dynamics Fundamental and Large-Scale Circulations, Cambridge University Press Cambridge, 2013.