A study of clear air turbulence by spontaneous imbalance theory

Document Type : Research Article


1 M.Sc. Graduated, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran

2 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran

3 Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran


Emission of inertia–gravity waves (IGWs) through imbalance is a well-known cause of clear air turbulence (CAT) in the upper troposphere. IGWs may initiate CAT by locally modifying the environmental characteristics of the meteorological quantities like static stability and wind shear. CAT is a micro-scale phenomenon for which there are also mechanisms other than IGWs. Accurate forecasting methods using numerical models and CAT diagnostic indices are still being studied and developed (Sharman and Lane, 2016). Following Knox et al. (2008) (hereafter KMW), the current study is focused on detecting CAT by spontaneous imbalance theory and the effect of IGWs on the flow.
For this purpose, the lifecycle of the baroclinic waves, including their phases of growth, overturn and decay as well as the generation and propagation of IGWs are investigated by numerical simulation using the Weather Research and Forecasting (WRF) model in a channel of 4000 km length, 10000 km width and 22 km height in respectively the zonal, meridional and vertical directions on the f plane, with a horizontal resolution of 25 km and vertical resolution of 0.25 km. Based on the wave–vortex decomposition (WVD) method, the unbalanced flow, and the dimensional and non-dimensional IGW amplitude have been estimated. In the next step, the non-dimensional wave amplitude has been alternatively determined for reference, based on the Lighthill–Ford theory of spontaneous imbalance in KMW method. Then the turbulent kinetic energy (TKE) dissipation and eddy dissipation rate (EDR) have been calculated to determine the intensity and location of CAT.
The results showed that KMW method uses a proportionality constant to make the non-dimensional wave amplitude as order of the Rossby number and determines the constant empirically by matching distributions of pilot reports of turbulence to the pattern of TKE dissipation. For this reason, the EDR has the best fit with the location of observed CAT and the minimum value of Richardson number. This is while most values of the non-dimensional wave amplitudes calculated by the WVD and harmonic divergence analysis are less than unity and have values of the order of the Rossby number itself. On day 8, when the baroclinic wave and IGWs are at their peak of activity, the pattern of distribution of EDR by WVD indicates that there is moderate turbulence all around the jet stream region, and the maximum values of EDR are located below the jet core and in the jet-exit region, which is similar to the location of wave activity and location of CAT in previous studies. Also minimum values of Richardson number are at the jet-exit region where the maxima of EDR reveal moderate turbulence there. The distribution of EDR by KMW, unlike the distribution of EDR by WVD, shows that in most areas of the flow, there is no sign of turbulence except in a few patchy places near the jet region, where moderate turbulence is predicted. Thus making use of an optimal WDV could improve the accuracy of detecting unbalanced parts of the flow and predicting areas of CAT in the upper troposphere in the vicinity of the jet stream.


Main Subjects

آریامنش، م.، قادر، س.، علی‌اکبری بیدختی، ع. و علیزاده، ا.، 1399، پیش‌بینی تلاطم هوای صاف در غرب ایران (مسیر پروازی تهران-اهواز و تهران-اردبیل) با استفاده از شبیه‌سازی‌های مدل WRF، م. ژئوفیزیک ایران، 14(3)، 120-143.
تاج‌بخش، س.، آزادی، م.، علی‌اکبری بیدختی، ع. و عربلی، پ.، 1385، مطالعه موردی تلاطم صاف روی ایران به کمک برخی از شاخص‌های تلاطم در یک دوره 5 ماهه (ژانویه-مه 2004)، م. فیزیک زمین و فضا، 32(1)، 85-102.
کلانتری، ب.، علی‌اکبری بیدختی، ع. و مبارک حسن، ا.، 1396، بررسی شکل‌گیری امواج کوهستان (امواج بادپناه) برفراز رشته‌کوه‌های زاگرس و تلاطم هوای صاف (CAT) ناشی از آن، م. فیزیک زمین و فضا، 43(2)، 451-459.
Chouksey, M., Eden, C. and Brüggemann, N., 2018, Internal gravity wave emission in different dynamical regimes. J. Phys. Oceanogr., 48, 1709–1730.
Cornman, L. B., Morse, C. S. and Cunning, G., 1995, Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircraft., 32 (1), 171–177.
Cornman, L. B., Meymaris, G., Prestopnik, J. and Tasset, T., 2008, An update on turbulence reporting from commercial aircraft. Proceedings 13th Conference on Aviation, Range, and Aerospace Meteorology. American Meteorological Society, Boston, MA10.1.
Dunkerton, T. J., 1997, Shear instability of inertia–gravity waves. J. Atmos. Sci., 54, 1628–1641.
Dutton, J. A., 1969, An energy budget for a layer of stratospheric CAT. Radio Sci., 4(12), 1137–1142.
Dutton, J. A. and Panofsky, H. A., 1970, Clear air turbulence: A mystery may be unfolding. Science, 167, 937–944.
Ellrod, G. P., Knox, J. A., Lester, P. F. and Ehernberg, L. J., 2003, Encyclopedia of Atmospheric Sciences. 2nd Edition. Volume 1, Elsevier Ltd.
Ford, R., 1994, Gravity wave radiation from vortex trains in rotating shallow water. Journal of Fluid Mechanics., 281, 81–118.
Ford, R., McIntyre, M. E. and Norton, W. A., 2000, Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 1236–1254.
Garratt, J. R., 1992, The Atmospheric Boundary Layer. Cambridge University Press: Cambridge. UK, 316 pp.
Hopkins, R. H., 1977, Forecasting techniques of clear-air turbulence including that associated with mountain waves. WMO, Secretariat of the World Meteorological Organization, Geneva, Switzerland. WMO-No. 482, technical note no. 155.
Kennedy, P. J. and Shapiro, M. A., 1980, Further encounters with clear air turbulence in research aircraft. J. Atmos. Sci., 37, 986–993.
Knox, J. A., 1997, Possible mechanisms of clear-air turbulence in strongly anticyclonic flow. Mon. Wea. Rev., 125, 1251–1259.
Knox, J. A., McCann, D. W. and William. P. D., 2008, Application of the Lighthill–Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci., 65, 3292–3304.
Lester, P. F., 1993, Turbulence: A new perspective for pilots. Jepson Sanderson. Inc., 236 pp.
Lighthill, M. J., 1952, On sound generated aerodynamically, I General theory. Proceedings of the Royal Society of London, 211A, 564–587.
McCann, D. W., 1999, A simple turbulent kinetic energy equation and aircraft boundary layer turbulence. National Weather Digest, 23, 13–19.
McCann, D. W., 2001, Gravity waves, unbalanced flow, and clear air turbulence. Natl. Wea. Dig., 25 (1–2), 3–14.
McCann, D. W., Knox, J. A. and Williams, P. D., 2012, An improvement in clear-air turbulence forecasting based on spontaneous imbalance theory: The ULTURB algorithm. Meteorological Applications, 19(1), 71–78.
Miles, J. W. and Howard, L. N., 1964, Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331–336.
Mirzaei, M., Zülicke, C., Mohebalhojeh, A. R., Ahmadi-Givi, F. and Plougonven, R., 2014, Structure, energy, and parameterization of inertia–gravity waves in dry and moist simulations of a baroclinic wave life cycle. J. Atmos. Sci., 71, 2390–2414.
Mirzaei, M., Mohebalhojeh, A. R., Zülicke, C., and Plougonven, R., 2017, On the quantification of imbalance and inertia–gravity waves generated in numerical simulations of moist baroclinic waves using the WRF model. J. Atmos. Sci., 74, 4241–4263.
O’Sullivan, D. and Dunkerton, T. J., 1995, Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 3695–3716.
Panofsky, H. A. and Dutton, J. A., 1984, Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, 255 pp.
Pettegrew, B., Loughe, A., Hart, J. E., Henderson, J. K. and Mahoney, J. A, 2010, On the use of eddy dissipation rate observations in verification. Proceedings 14th Conference on Aviation, Range, and Aerospace Meteorology. American Meteorological Society: Boston, MA, paper P473.
Plougonven, R., Teitelbaum, H. and Zeitlin, V., 2003, Inertia–gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108, 4686.
Plougonven, R., Muraki, D. J. and Snyder, C., 2005, A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62, 1545–1559.
Plougonven, R. and Zhang, F., 2007, On the forcing of inertia–gravity waves by synoptic-scale flows. J. Atmos. Sci., 64, 1737–1742.
Plougonven, R. and Zhang, F., 2014, Internal gravity waves from jets and fronts. Rev. Geophys., 52, 33–76.
Sharman, R., Tebaldi, C., Wiener, G. and Wolff J., 2006, An integrated approach to mid- and upper-level turbulence forecasting. Wea. and Forecasting, 21(3), 268–287.
Sharman, R. and Lane, T., 2016, Aviation Turbulence Processes, Detection, Prediction. Springer International Publishing Switzerland. P.10.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. and Powers, J. G., 2008, A description of the Advanced ResearchWRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
Thorncroft, C. D., Hoskins, B. J. and McIntyre, M. E., 1993, Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17–55.
Vanneste, J., 2013, Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147–172.
Wei, J. and Zhang, F., 2014, Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929–952.
Wei, J., Zhang, F. and Richter, J. H., 2016, An analysis of gravity wave spectral characteristics in moist baroclinic jet–front systems. J. Atmos. Sci., 73, 3133–3155.
Williams, P. D., Haine, T. W. N. and Read, P. L., 2005, On the generation mechanisms of short-scale unbalanced modes in rotating two layer flows with vertical shear. J. Fluid Mech., 528, 1–22.
Williams, P. D., Haine, T. W. N. and Read, P. L., 2008, Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 3543–3556.
Zülicke, C. and Peters, D. H. W., 2006, Simulation of inertia–gravity waves in a poleward-breaking Rossby wave. J. Atmos. Sci., 63, 3253–3276.
Zülicke, C. and Peters, D. H. W., 2008, Parameterization of strong stratospheric inertia–gravity waves forced by poleward-breaking Rossby waves. Mon. Wea. Rev., 136, 98–119.