حسنیپاک، ع. ا.، 1389، زمین آمار (ژئواستاتیستیک)، انتشارات دانشگاه تهران، تهران، 314 ص.
غفاری رزین، م. ر. و وثوقی، ب.، 1395، برآورد میدان سرعت پوسته زمین با استفاده از شبکه عصبی مصنوعی و درونیابی کرِیجینگ فراگیر (منطقه موردمطالعه: شبکه ژئودینامیک کشور ایران)، مجله فیزیک زمین و فضا، 42(1)، 89-98.
Bogusz, J., Klos, A., Grzempowski, P. and Kontny, B., 2013, Modelling the velocity field in a regular grid in the area of poland on the basis of the velocities of European permanent stations, Pure and Applied Geophysics, doi: 10.1007/s00024- 013-0645-2.
Briggs, I. C., 1974, Machine contouring using minimum curvature, Geophysics, 39(1), 39–48.
Frohling, E. and Szeliga, W., 2016, GPS constraints on interpolate locking within Makran subduction zone, Geophys. J. Int., 205, 67–76.
Franke, R., 1982, Smooth interpolation of scattered data by local thin plate splines. Computers & Mathematics with Applications, 8(4), 273–281. doi:10.1016/0898- 1221(82)90009-8.
Ghaffari Razin, M. R. and Mohammadzadeh, A., 2015, 3-D crustal deformation analysis using isoparametric method and multi-layer artificial neural networks (Case Study: Iran), Engineering Journal of Geospatial Information Technolog, 2 (4), 1-15.
Ghods, A., Shabanian, E., Bergman, E., Faridi, M., Donner, S., Mortezanejad, G. and Aziz Zanjani, A., 2015, The Varzaghan–Ahar, Iran, Earthquake Doublet (Mw 6.4, 6.2): implications for the geodynamics of northwest Iran. Geophys. J. Int., 203, 522–540.
Gullu, M., Yilmaz, I., Yilmaz, M. and Turgut, B., 2011, An alternative method for estimating densification point velocity based on back propagation artificial neural networks, Studia Geophysica et Geodaetica, 55(1), 73-86.
Hackl, M., Malservaisi, R. and Wdowinski, S., 2009, Strain pattern from dense GPS networks, Nat. Hazards Earth Syst., 9, 1177–1187.
Haines, A. J. and Holt, W. E., 1993, A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J. Geophys. Res., 98, 12,057–12, 082, doi:10.1029/93JB00892.
Haines, A. J., Dimitrova, L. L., Wallace, L. M. and Williams, C. A., 2015, Enhanced Surface Imaging of Crustal Deformation: Obtaining Tectonic Force Fields Using GPS Data, 99 pp., Springer Int. Publ., New York, doi:10.1007/978-3-319-21578-5.
Hearn, E., Johnson, K., Sandwell, D. and Thatcher, W., 2010, SCEC UCERF workshop report. [Available at http://www.scec.org/workshops/ 2010/gps-ucerf3/FinalReport_GPS UCERF3Workshop.pdf.]
Hessami, K., Jamali, F. and Tabassi, H., 2003, Major Active Faults of Iran (map), Ministry of Science, Research and Technology, International Institute of Earthquake Engineering and Seismology.
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S. A., Walpersdorf, A., Hosseini, S., Tavakoli, P., Aghamohammadi, A. and Alijanzade, M., 2019, An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophys. J. Int., 217, 832–843.
McCaffrey, R., King, R. W., Payne, S. J. and Lancaster, M., 2013, Active tectonics of northwestern US inferred from GPS-derived surface velocities, J. Geophys. Res. Solid Earth, 118, 709–723, doi:10.1029/2012JB009473.
Moghtased-Azar, K. and Zaletnyik, P., 2009, Crustal velocity field modeling with neural network and polynomials, in: Sideris, M.G., (Ed.), Observing our changing Earth, International Association of Geodesy Symposia, 133, 809-816.
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space: Bulletin of the Seismological Society of America, 75, 4, 1135-1154.
Oliver, M. A. and Webster, R., 2015, Basic steps in Geostatistics: The Variogram and Kriging, Springer, 106 pp.
Raeesi, M., Zarifi, Z., Nilfouroushan, F., Boroujeni S. and Tiampo, K., 2017, Quantitative Analysis of Seismicity in Iran. Pure Appl. Geophys., 174, 793-833.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R. and Karam, G., 2006, GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions, J. geophys. Res., 111, doi:10.1029/2005JB004051.
Sandwell, D. T. and Wessel P., 2016, Interpolation of 2-D vector data using constraints from elasticity, Geophys. Res. Lett., 43, 10, 703–10,709, doi:10.1002/2016GL070340.
Sandwell, D. T., 1987, Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data, Geophys. Res. Lett., 14, 139–142, doi:10.1029/GL014i002p00139.
Shen, Z. K., Wang, M., Zeng, Y. and Wang, F., 2015, Optimal interpolation of spatially discretized geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117–2127, doi:10.1785/0120140247.
Smith, B. and Sandwell, D., 2003, Coulomb stress accumulation along the San Andreas Fault system, J. Geophys. Res., 108(B6), 2296, doi:10.1029/2002JB002136.
Smith, W. H. F. and Wessel, P., 1990, Gridding with continuous curvature splines in tension, Geophysics, 55(3), 293–305, doi:10.1190/ 1.1442837.
Swain, C. J., 1976, A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature, Comput. Geosci., 1(4), 231–240.
Talebian, M., Ghorashi, M. and Nazari, H., 2013, Seismotectonic map of the Central Alborz, Research Institute for Earth Sciences, Geological Survey of Iran.
Uieda, L., 2018, Verde: Processing and gridding spatial data using Green’s functions. Journal of Open Source Software, 3(30), 957. https://doi.org/10.21105/joss.00957.
Uieda, L., Sandwell, D. and Wessel, P., 2018, Presentation: Joint Interpolation of 3-component GPS Velocities Constrained by Elasticity. figshare. doi:10.6084/m9.figshare.6387467.
VanGorp, S., Masson, F. and Chéry, J., 2006, The use of Kriging to interpolate GPS velocity field and its application to the Arabia-Eurasia collision zone, Geophysical Research Abstracts, 8, 02120.
Wessel, P. and Bercovici, D., 1998, Interpolation with splines in tension: A Green’s function approach, Math. Geol., 30(1), 77–93, doi:10.1023/ A:1021713421882.