ارزیابی عملکرد طرحواره‌های همرفت کومه‌ای و لایه مرزی مدل WRF-NMM در شبیه‌سازی بارش‌های فرین استان بوشهر در دورۀ 2000-2020

نوع مقاله : پژوهشی

نویسنده

استادیار پژوهشکده علوم جوی، پژوهشگاه ملی اقیانوس‌شناسی و علوم جوی

چکیده

برای استفاده از مدل‌های عددی که دارای انواع پارامترسازی‌های فیزیکی هستند، لازم است تا قبل از اجرا انتخاب صحیحی بین طرحواره‌های مختلف انجام شود. در این تحقیق، عملکرد چندین طرحوارۀ فیزیکی همرفت کومه‌ای و لایه مرزی مدل WRF-NMM برای شبیه‌سازی 12 بارش فرین در استان بوشهر ارزیابی شد. در پیکربندی مدل، سه دامنه با تفکیک‌های 27، 9 و 3 کیلومتر و داده‌های ERA5 برای شرایط اولیه و مرزی ( با 108 اجرا برای انتخاب طرحوارۀ همرفت کومه‌ای مناسب و 72 اجرا برای انتخاب طرحواره لایه مرزی مناسب) انجام شد. برای ارزیابی بارش شبیه‌سازی شده، از دو نوع داده مشاهداتی (1) ثبت شده در نقاط ایستگاهی استان بوشهر و (2) داده‌های بارش ماهوارۀ GPM (محصول IMERG-DL) در نقاط شبکه‌ای استفاده شد. فرایند ارزیابی با کاربست شاخص‌های آماری و به تفکیک زمان بارش‌ها و ایستگاه‌های ساحلی و غیرساحلی انجام شد. عدم پیش‌یبینی بارش رگباری توسط هستۀ NMM موجب فروتخمین شدن بارش در شبیه‌سازی‌ها شد. با این‌حال، از بین 6 طرحوارۀ همرفت کومه‌ایِ KF، BMJ، SAS، oldSAS، NSAS و TiedTKE، طرحوارۀ oldSAS کمترین خطا را تولید کرد. ارزیابی عملکرد طرحواره‌های لایه مرزی MRF، MYJ، QNSE و YSU در برآورد بارش با انتخاب طرحوارۀ همرفت کومه‌ای oldSAS (در دو دامنۀ بزرگ‌تر)، نشان داد که طرحوارۀ MRF در نقاط ایستگاهی و نقاط شبکه‌‌ای کمترین خطا را تولید کرده‌ است. نتایج حاصل از این تحقیق نشان داد که مدل WRF-NMM نتایج قابل قبولی برای منطقه داشته است و ضرورت استفاده از طرحواره‌های بهینه را برای تحقیقات آتی روشن ساخت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An assessment of WRF-NMM configurations in heavy rainfalls over the Bushehr Province during 2000-2020; using cumulus and boundary layer schemes

نویسنده [English]

  • Nafiseh Pegahfar
Assistant Professor, Atmospheric Sciences Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
چکیده [English]

The mesoscale numerical weather prediction system of Weather Research and Forecasting (WRF), with two cores of ARW and NMM, has been used for atmospheric research, operational forecasting, and dynamical downscaling of Global Climate Models. Many parameterizations for each physics option can be accessed in this model. It is noteworthy that the performance of the model depends on the selected configuration and varies in different areas. Therefore, choosing a configuration with the lowest error for each terrain is mandatory. Here, the performance of various physics schemes, including cumulus and boundary layer schemes of the WRF-NMM model, was examined to simulate the twelve heaviest extreme rainfall events in the southwest of Iran, the Bushehr Province, during 2000-2020. These events lasted for eighteen days. Three domains with 27, 9, and 3 km resolution were used in the configuration, with no cumulus option for the smallest one. The initial and boundary conditions were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) datasets. One hundred and eight simulations were run using six cumulus schemes of KF, BMJ, SAS, oldSAS, NSAS, and TiedTKE, and seventy-two runs were done to evaluate the boundary layer schemes of MRF, MYJ, QNSE, and YSU. The simulated precipitation patterns were assessed using two observational data sets, including (I) in-situ measured data from eleven automatic weather stations and (II) grid point data from Global Precipitation Measurement (GPM) satellite with 0.1-degree horizontal resolution. Four statistic indices of Root Mean Square Error, Correlation Coefficient, Standard Deviation, and Bias were applied in the evaluation process. The evaluation process with the data measured at 11 automatic weather stations was done using outputs of the third domain. The outputs of the second domain were used for evaluation basis on GPM data at grid points. For a comprehensive analysis, the assessment process was performed separately for rainfall events (March-April and November-December events) and coastal and non-coastal stations. Comparison of precipitation from simulations of various cumulus schemes with the eleven in-situ data showed that the schemes from SAS family well performed at March-April events at coastal and noncoastal stations. While, the KF scheme produced the least error at coastal and noncoastal stations during the November-December events. The precipitation data from 1271 GPM grid-point data revealed that the oldSAS scheme generated the least error for the March-April and November-December events. According to the number of GPM grid-point data, the oldSAS scheme opted as the cumulus option for the next runs. Evaluation of WRF-NMM simulations using different boundary layer physics with the in-situ data indicated that MRF scheme produced the minor error at coastal and noncoastal stations for both March-April and November-December events. Using the 1271 GPM grid-point data illustrated that the QNSE and MRF (MYJ and MRF) options did the best performance for March-April (November-December) events. In conclusion, based on the number of GPM grid-point data compared with in-situ measured data, it is suggested that the oldSAS cumulus scheme and MRF boundary layer scheme can be chosen with some robustness in predicting the amount and pattern of the heavy rainfall precipitation in Bushehr Province of Iran. It is also notable that the default options introduced by the model for cumulus scheme and boundary layer scheme in the WRF-NMM model produce the largest error and are not appropriate for the selected area. This reveals the importance of adequately selecting physics options for this area.

کلیدواژه‌ها [English]

  • heavy rainfall
  • Bushehr Province
  • WRF-NMM model
  • cumulus scheme
  • boundary layer scheme