Assessment of the performance of cumulus and boundary layer schemes in the WRF-NMM model in simulation of heavy rainfalls over the Bushehr Province during 2000-2020

Document Type : Research Article


Assistant Professor, Atmospheric Science Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran


The mesoscale numerical weather prediction system of Weather Research and Forecasting (WRF), with two cores of ARW and NMM, has been used for atmospheric research, operational forecasting, and dynamical downscaling of Global Climate Models. Many parameterizations for each physics option can be accessed in this model. It is noteworthy that the performance of the model depends on the selected configuration and varies in different areas. Therefore, choosing a configuration with the lowest error for each terrain is mandatory. Here, the performances of various physics schemes, including cumulus and boundary layer schemes of the WRF-NMM model, were examined to simulate twelve heaviest extreme rainfall events in the southwest of Iran, the Bushehr Province, during 2000-2020. These events lasted for eighteen days. Three domains with 27, 9, and 3 km resolution were used in the model configurations, with no cumulus option for the smallest one. The initial and boundary conditions were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) datasets. One hundred and eight simulations were done using six cumulus schemes of KF, BMJ, SAS, oldSAS, NSAS, and TiedTKE, and seventy-two runs were done to evaluate the boundary layer schemes of MRF, MYJ, QNSE, and YSU. The simulated precipitation patterns were assessed using two observational data sets, including (I) in-situ measured data from eleven automatic weather stations and (II) grid point data from Global Precipitation Measurement (GPM) satellite with 0.1-degree horizontal resolution. Four statistic indices of Root Mean Square Error, Correlation Coefficient, Standard Deviation, and Bias were applied in the evaluation process. The evaluation process with the data measured at 11 automatic weather stations was done using outputs of the third domain. The outputs of the second domain were used for evaluation basis on GPM data at grid points. For a comprehensive analysis, the assessment process was performed separately for rainfall events (March-April and November-December events) in coastal and non-coastal stations. Comparison of precipitation from simulations of various cumulus schemes with the eleven in-situ data showed that the schemes from SAS family well performed at March-April events at coastal and noncoastal stations. While, the KF scheme produced the least error at coastal and noncoastal stations during the November-December events. The precipitation data from 1271 GPM grid-point data revealed that the oldSAS scheme generated the least error for the March-April and November-December events. According to the number of GPM grid-point data, the oldSAS scheme opted as the cumulus option for the next runs. Evaluation of WRF-NMM simulations using different boundary layer physics with the in-situ data indicated that MRF scheme produced the minor error at coastal and noncoastal stations for both March-April and November-December events. Using the 1271 GPM grid-point data illustrated that the QNSE and MRF (MYJ and MRF) options did the best performance for March-April (November-December) events. In conclusion, based on the number of GPM grid-point data compared with in-situ measured data, it is suggested that the oldSAS cumulus scheme and MRF boundary layer scheme can be chosen with some robustness in predicting the amount and pattern of the heavy rainfall precipitation in Bushehr Province of Iran. It is also notable that the default options introduced by the model for cumulus scheme and boundary layer scheme in the WRF-NMM model produce the largest error and are not appropriate for the selected area. This reveals the importance of adequately selecting physics options for this area.


Main Subjects

آزادی، م.، شیرغلامی، م. ر.، حجام، س. و صحراییان، ف.،1390، پس­پردازش برونداد مدل WRF برای بارندگی روزانه در ایران. تحقیقات منابع آب ، 7(4)، 71-81.
آزادی، م.، صوفیانی، م.، وکیلی، غ. و قائمی، ه.، 1395، مطالعه موردی اثر گوارد داده‌های ایستگاه‌های دیدبانی و جو بالا بر برون‌داد بارش مدل WRF روی منطقه ایران. مجله ژئوفیزیک ایران، 10(2)، 110-119.
پگاه­فر، ن.، 1400، ارزیابی عملکرد طرحواره‌های همرفت کومه‌ای در مدل HWRF در پیش‌بینی مشخصه‌های توفان حاره‌ای، مطالعه موردی توفان حاره‌ای گونو، م. فیزیک زمین و فضا، 47(1)، 145-174.
تقوی، ف.، نیستانی، الف. و قادر، س.، 1392، ارزیابی پیش­بینی­های کوتاه مدت بارش مدل عددی WRF در منطقه ایران در دوره یک ماهه، م. فیزیک زمین و فضا، 39(2)، 145-170.
دنیادوست، غ.، ارکیان، ف.، رنجبر، ع. و میرزایی، م.، 1394، بررسی عددی توفان های تندری در تهران توسط مدل WRF-ARW، پژوهش های اقلیم شناسی، 23، 49-80.
رضازاده، م.، مرادیان، ف. و قادر، س.، 1399، بررسی عملکرد سامانه همادی چند‌فیزیکی مدل میان‌مقیاس WRF جهت شبیه‌سازی بارش در مناطق مرکزی ایران، مجله فیزیک زمین و فضا، 14(1)، 13-38.
مرادی، ش.، جوانمرد، س.، قادر، س.، آزادی، م. و قرایلو، م.، 1399، موثرترین طرحواره در بهبود عملکرد مدل WRF جهت پیش بینی بارش در منطقه شمال غرب ایران -مطالعه موردی، هواشناسی و علوم جو، 3(3) 188-200.
نیستانی، الف.، قادر، س. و محب الحجه، ع.، 1396، کاربست داده‌گواری در مدل WRF برای شبیه‌سازی بارش ناشی از یک سامانه همدیدی در غرب ایران، مجله فیزیک زمین و فضا، 11(1)، 101-123. 
Ahmadloo, M., Gharaylou, M., Mazrae Farahani, M. and Peghafar, N., 2022, Convection-permitting Simulation of a Mesoscale Convective System Accompanying an Intense Flood over Iran using the WRF Model. Pure and applied geophysics.
Chawla, I., Osuri, K.K., Mujumdar, P.P. and Niyogi, D., 2018, Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrology and Earth System Sciences, 22(2), 1095-1117.
Franchito, S.H., Gan, M.A. and Fernandez, J.P.R., 2019, Strong Rainfall in Mato Grosso do Sul, Brazil: Synoptic Analysis and Numerical Simulation. In Natural Hazards. IntechOpen.
Hasan, M.A. and Islam, A.S., 2018, Evaluation of microphysics and cumulus schemes of WRF for forecasting of heavy monsoon rainfall over the Southeastern Hilly region of Bangladesh. Pure and Applied Geophysics, 175(12), 4537-4566.
Huffman G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J. and Tan, J., 2019, GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/GPM/IMERG/3B-HH/06.
Janjic, Z. I., 2003, A nonhydrostatic model based on a new approach, Meteorol. Atmos. Phys., 82, 271–285.
Jeworrek, J., West, G. and Stull, R., 2019, Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Weather and Forecasting, 34(4), 1097-1115.
Jorba, O., Loridan, T., Jiménez-Guerrero, P. and Baldasano, J.M., 2008, Annual evaluation of WRF-ARW and WRF-NMM meteorological simulations over Europe. In 9th Annual WRF Users’ Workshop, 23-27.
Kalinin, N.A., Vetrov, A.L., Sviyazov, E.M. and Popova, E.V., 2013, Studying intensive convection in Perm krai using the WRF model. Russian Meteorology and Hydrology, 38(9), 598-604.
Litta, A.J., Mary Ididcula, S., Mohanty, U.C. and Kiran Prasad, S., 2012, Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over east indian region. The Scientific World Journal, 2012.
Litta, A.J. and Mohanty, U.C., 2008, Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRFNMM model. Curr. Sci., 95, 204–215.
Madala, S., Satyanarayana, A.N.V. and Rao, T.N., 2014, Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility—case study. Atmospheric research, 139, 117.
Marjanović, D., Veljovic, K. and Zaric, M., 2017, Forecasts of extreme precipitation in the western B alkans in M ay 2014: model skill and sensitivity to the vertical co‐ordinate. Meteorological Applications, 24(3), 387-396.
MDE, D.B., DEP, T.D.M., DEC, M.K.N., DEC, W.H.N., DEC, G.S.N., DEQ, M.K.V., DNR, M.J.I. and DNR, D.B.I., 2009, Sensitivity testing of WRF physics parameterizations for meteorological modeling and protocol in support of regional SIP air quality modeling in the OTR.
Ngailo, T.J., Shaban, N., Reuder, J., Mesquita, M.D., Rutalebwa, E., Mugume, I. and Sangalungembe, C., 2018. Assessing Weather Research and Forecasting (WRF) Model parameterization schemes skill to simulate extreme rainfall events over Dar es Salaam on 21 December 2011. Journal of Geoscience and Environment Protection, 6(01), 36.
Pegahfar, N., Gharaylou, M. and Shoushtari, M.H., 2022, Assessing the performance of the WRF model cumulus parameterization schemes for the simulation of five heavy rainfall events over the Pol-Dokhtar, Iran during 1999-2019, Natural Hazard.
Pennelly, C., Reuter, G. and Flesch, T., 2014, Verification of the WRF model for simulating heavy precipitation in Alberta. Atmospheric Research, 135, 172-192.
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., and Powers, J.G., 2005, A Description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TND468+STR, available at:
Spiridonov, V., Baez, J. and Telenta, B., 2017, Heavy convective rainfall forecast over Paraguay using coupled WRF-cloud model. In Perspectives on Atmospheric Sciences, 183-189.
Spiridonov, V. and Ćurić, M., 2019, Evaluation of Supercell Storm Triggering Factors Based on a Cloud Resolving Model Simulation. Asia-Pacific Journal of Atmospheric Sciences, 55(3), 439-458.
Spiridonov, V., Baez, J., Telenta, B. and Jakimovski, B., 2020, Prediction of extreme convective rainfall intensities using a free-running 3-D sub-km-scale cloud model initialized from WRF km-scale NWP forecasts. Journal of Atmospheric and Solar-Terrestrial Physics, 209, 105401.
Srinivas, C. V., Yesubabu, V., Prasad, D. H., Prasad, K. H., Greeshma, M. M., Baskaran, R. and Venkatraman, B., 2018, Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics. Atmospheric Research, 210, 66-82.
Sun, J., Zhang, Y., Ban, J., Hong, J.S. and Lin, C.Y., 2020, Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study. Monthly Weather Review, 148(5), 2211-2232.
Taylor, K.E. 2001, Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos,106, 7183–7192.