Adeniran, A., Elshafei, M., & Hamada, G. (2009). Functional network soft sensor for formation porosity and water saturation in oil wells, Instrumentation and Measurement Technology Conference, I2MTC '09. IEEE, Singapore, 113-1143.
American Petroleum Institute. (1998). Recommended Practices for Core Analysis Handbook, API publications, http://www.api.org.
Archie, G.E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Transactions of AIME, 146, 54-62.
Asquith, G., & Krygowski, D. (2004). AAGP Methods in Exploration, No. 16, Chapter 5: Resistivity Logs. Pages 77-101.
Bagheripour, P., & Asoodeh, M. (2014). Genetic implanted fuzzy model for water saturation determination. Journal of Applied Geophysics, 103, 232-236.
Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys (CSUR), 35, 268-308.
Hsu, C.W., Chang, C.C., & Lin, C.J. (2003). A practical guide to support vector classification.
Jafari Kenari, S.A., & Mashohor, S. (2013). Robust committee machine for water saturation prediction. Journal of Petroleum Science and Engineering, 104, 1-10.
Jia, J., Ke, Sh., Li, J., Kang, Zh, Ma, X., Li, M., & Cue, J. (2020). Estimation of Permeability and Saturation Based on Imaginary Component of Complex Resistivity Spectra: A Laboratory Study. Open Geoscience, 12, 299-306.
Keerthi, S.S., Sindhwani, V., & Chapelle, O. (2007). An efficient method for gradient based adaptation of hyperparameters in SVM models, in: Advances in neural information processing systems, 673-680.
Le, V.H., Liu, F., & Tran. D.K. (2009). Fuzzy Linguistic Logic Programming and its Applications. Theory and Practice of Logic Programming (TPLP).
Li, Z., Xie, Y., Li, X., & Zhao, W. (2021). Prediction and application of porosity based on support vector regression model optimized by adaptive dragonfly algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(9), 1073-1086.
Lim, K.M., Sim, Y.C., & Oh, K.W. (2002). A Face Recognition System Using Fuzzy Logic and Artificial Neural Network”, IEEE. [1992 Proceedings] IEEE International Conference on Fuzzy Systems, USA.
Luthi, E.M. (2001). Geological well logs, their use in reservoir modeling, Springer-Verlag Berlin Heidelberg, Germany.
Okwu, M., & Nwachukwu, A.N. (2019). A review of fuzzy logic applications in petroleum exploration, production and distribution operations. Journal of Petroleum Exploration and Production Technology, 9(2), 1555–1568.
Pickett, G.R. (1966). A Review of Current Techniques for Determination of Water Saturation from Logs, SPE 1446.
Schlumberger. (1991). Log Interpretation Principles/Applications. Schlumberger Wireline & Testing, SMP- 7017, Sugar Land, Texas.
Talbi, E.G. (2009). Methaheuristics: from Design to Implementation. Volume 74. John Wiley & Sons.
Tonstad, S.L., Boordsen, H., & Ringen, J.K. (1990). Alternative Methods for Determining Water Saturation in Core Plugs, Advances in Core Analysis, Gorden and Breach, Sc., 345-409.
Vapnik, V.N. (1995). The Nature of Statitical learning Theory. Springer, New York.
Walther, H.C. (1967). Saturation from Logs-Laberatory Measurements of Logging Parameters, SPE 42nd Annual Meeting Huston, Tex. Oct, 1-4.
Yu, H., & Kim, S. (2012). SVM tutorial: classification, regression, and ranking, Handbook of Natural Computing. Springer Berlin Heidelberg, 479-506.
Zadeh, L.A. (1965). Fuzzy Sets, Information and Control, 8(3), 338–353.
Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., & Zhuang, J. (2018), Modeling and Simulating of Reservoir operation Using the Artificial Neural Network, Support Vector Regression, Deep Learning Algorithm. Journal of Hydrology, 565, 720-736.