Investigation of Seasonal dust in northeastern Iran and numerical simulation of extreme dust events using WRF-CHEM model

Document Type : Research Article

Authors

1 Associate Professor, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

2 M.Sc. Graduated, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

3 Assistant Professor, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

4 Post-Doc Researcher, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In recent years, dust storm has become a serious environmental concern and has attracted a lot of attention among atmospheric scientists. Northeast of Iran is a large and strategic population area. Due to its proximity to large arid regions in Central Asia, this region has a high risk of experiensing dust events. In recent years, it has faced many problems regarding dust phenomena. This study is conducted to investigate seasonal dust events in northeastern Iran. To achieve this goal, a combination of station data, reanalysis, satellite and output of the WRF-Chem numerical model have been used simultaneously to improve our understanding of the dust seasonal cycle in northeast of Iran. Accordingly, this research was organized in two parts: monitoring and modeling of dust phenomenon. The results of this study may be useful for forecasting dust storms as well as spatial planning.
To investigate the dust events seasonal variabilities, the dust surface mass concentration of MERRA-2 dataset, aerosol optical depth (AOD) of the combined Dark Target (DT) and Deep Blue (DB) algorithms of MODIS sensor of Terra and Aqua satellites were examined during the long-term period (2004-2018).
Since the emission of dust is highly dependent on biophysical components, it is necessary to use numerical models. The WRF-Chem numerical model was used for this purpose. The study area includes northeastern Iran and parts of Central Asia. The horizontal resolution of the child domin of 30 km model was performed with 32 vertical levels. The NCEP / FNL is used as boundary conditions with 3-hourly time step and 1-degree horizontal resolution for the model configuration. Four extreme dust events were selected to investigate the transport of dust to northeastern Iran. The selected dust events occurred on November 13, 2007, May 29, 2008, June 8, 2015, and October 17, 2017 in northeastern Iran. Therefore, case events were simulated with a time step of 180 seconds and output every three hours using GOCART, AFWA, UoC_S01 and UoC_S11 schemes.
The results showed that the maximum dust activity occurred in spring with AOD value equal to 0.59 and dust surface mass concentration is 645.2 µg m -3. The summer is in the next place. Seasonal analysis of AOD and dust using satellite and reanalysis data, showed that Aralkum, Kyzylkum, Karakum and Kara-Bogaz-Gol are the main dust sources in Central Asia that are active in all seasons.
Comparison of dust simulation results for PM2.5 and PM10 variable with observational data of air quality control stations in Mashhad showed that GOCART‌ scheme can well depict dust events and provide a low bias towards station data. Also, the study of correlation coefficient between simulation and observation showed that the GOCART scheme explains nearly 90% of the variance of data. The root mean square error (RMSE) for the GOCART scheme is less than 20 micrograms per cubic meter for PM2.5. Accordingly, the GOCART scheme is a suitable scheme for dust study in Northeast of Iran and the WRF-Chem model can be used to operationally forecast dust storms. The dust detection algorithm (DDA) of the AIRS sensor and the aerosol optical depth (AOD) of the MODIS sensor confirm the contribution of the mentioned sources of dust in transferring dust to the northeast of Iran. The results showed that three of the case studies occurred as a result of the passage of an extratropical Rossby wave and the deepening of the trough on the territory of Turkmenistan. In contrast, the summer case study is the result of the establishment of a summer circulation pattern that has occurred with the simultaneous establishment of an anticyclonic circulation in the southern part of Turkmenistan and the northeastern parts of Iran and a cyclonic circulation in the Sistan plain and southeastern parts of the country.

Keywords

Main Subjects


براتی، غ.، مرادی، م.، شامخی، ع. و داداشی رودباری، ع.، 1396، تحلیل روابط توفان‌های غباری جنوب ایران با کم‌فشار سند. مخاطرات محیط طبیعی، 6(13)، 91-108.
تقوی، ف.، اولاد، ا.، صفر راد، ط. و ایران‌نژاد، پ.، 1392، تشخیص و پایش توفان گردوغبار غرب ایران با استفاده از روش‌‌‌های سنجش‌ازدور، م. فیزیک زمین و فضا، 39(3)، 83-96.
داداشی رودباری، ع.، 1399، واکاوی وردایی زمانی-مکانی الگوهای قائم و افقی ریز گردها و ارزیابی بازخوردهای آب هوایی آن در ایران، رساله دکتری آب‌وهوا شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی.
دوستان، ر.، 1397، تحلیل همدید گرد وغبار شمال شرق ایران، مخاطرات محیط طبیعی، 7 (16)، 23-44.
ذوالفقاری، ح.، معصوم پور سما کوش، ج.، شایگان‌مهر، ش. و احمدی، م.، 1390، بررسی همدید توفان‌های گردوغباری در مناطق غربی ایران طی سال‌های 1384 تا 1388(مطالعه موردی: موج فراگیر تیرماه 1388)، م. جغرافیا و برنامه‌ریزی محیطی، 43(3)، 17-34.
رایگانی، ب.، 1398، شناسایی کانون‌های بالقوه تولید گردوغبار با استفاده از داده‌های سنجش‌ازدور (مطالعه موردی: استان البرز). م. مخاطرات محیط طبیعی، 8(20)، 1-20.
رسولی، ع.، سار‌ی صراف؛ ب. و محمدی، غ.، 1390، تحلیل روند وقوع پدیده اقلیمی گردوغبار در غرب کشور در 55 سال اخیر با به‌کارگیری روش‌های آماری نا پارامتری، فصلنامه جغرافیای طبیعی، 4(11)، 1-16.
رضازاده، م.، ایران‌‌نژاد، پ. و شائو، ی.، 1392، شبیه‌سازی گسیل غبار با مدل پیش‌بینی عددی وضع هوا WRF-Chem و با استفاده از داده‌های جدید سطح در منطقه خاورمیانه، م. فیزیک زمین و فضا، 39(1)، 191-212.
ساری صراف، ب.، رسولی، ع.، زرین، آ. و نجفی، م.، 1396الف، شبیه‌سازی توزیع قائم سامانه‌های گردوغبار زا در ارتباط با سامانه‌های همدید و توپوگرافی در غرب ایران، م. پژوهش‌های جغرافیای طبیعی، 49(2)، 169-189.
ساری صراف، ب.، رسولی، ع.، زرین، آ. و نجفی، م.، 1396ب، شبیه‌سازی واداشت‌های تابشی گردوغبار در غرب ایران، م. جغرافیا و مخاطرات محیطی، 6(22)، 140-123.
سهرابی، ط.، رنجبر فردویی، ا.، ولی، ع. و موسوی، ح. 1398، مدل‌سازی آماری گردوغبار استان اصفهان با استفاده از مدل رگرسیون پوآسن آماسیده صفر، م. تحقیقات مرتع و بیابان ایران، 26(3)، 689-703.
علی‌آبادی، ک.، داداشی رودباری، ع. و اسدی زنگنه، م.، 1394، ارزیابی و پایش توفان گردوغبار با استفاده از روش‌های سنجش‌ازدور، نشریه امداد و نجات ایران، 7(1)، 1-20.
کرمی، س.، رنجبر سعادت‌آبادی، ع.، محب الحجه، ع. و مرادی، م.، 1397، مدلی عددی به روش حجم متناهی برای شبیه‌سازی انتقال گردوخاک در جوّ، م. فیزیک زمین و فضا، 44(1)، 125-146.
گودرزی، م.، حسینی، ا. و احمدی، ح.، 1396، ارزیابی توزیع زمانی و مکانی روزهای همراه با گردوغبار در غرب و جنوب غرب ایران. مجله علوم و مهندسی آبخیزداری ایران. ۱۱ (۳۹)، ۱-۱۰.
لشکری، ح. و کیسخروی، ق.، 1387. تحلیل آماری سینوپتیکی توفان‌‌های گرد و غبار استان خراسان رضوی در فاصله زمانی (2005-1993)، پژوهش­های جغرافیای طبیعی، 40 (65)، 17-33.
منتظری، م. و دادخواه، ل.، 1392، بررسی روند تغییرات روزهای همراه با گردوغبار در ایستگاه سینوپتیک بوشهر، فصلنامه علمی- پژوهشی اطلاعات جغرافیایی «سپهر»، 22(86-1)، 89-91.
Barnes, W. L., Xiong, X. and Salomonson, V. V., 2003, Status of terra MODIS and aqua MODIS. Advances in Space Research, 32(11), 2099-2106.
Chaibou, A. A. S., Ma, X., Kumar, K. R., Jia, H., Tang, Y. and Sha, T., 2020, Evaluation of dust extinction and vertical profiles simulated by WRF-Chem with CALIPSO and AERONET over North Africa. Journal of Atmospheric and Solar-Terrestrial Physics, 199, 105213.
Chen, S.H. and Dudhia, J., 2005, Annual Report: WRF PHYSICS [R/OL]. http://www2.mmm.ucar.edu/wrf/users/docs/wrf-doc-physics.pdf.
Chen, J., Wan, S., Henebry, G., Qi, J., Gutman, G., Sun, G. and Kappas, M. (Eds.), 2013, Dryland East Asia: land dynamics amid social and climate change. Walter de Gruyter.
Chen, S., Jiang, N., Huang, J., Zang, Z., Guan, X., Ma, X., Luo, Y., Li, J., Zhang, X. and Zhang, Y., 2019, Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmospheric Environment, 200, 50-60.
Chin, M., Diehl, T., Tan, Q., Prospero, J.M., Kahn, R.A., Remer, L.A., Yu, H., Sayer, A.M., Bian, H., Geogdzhayev, I.V. and Holben, B.N., 2014, Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 14(7), 3657-3690.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B.N., Duncan, B.N., Martin, R.V., Logan, J.A., Higurashi, A. and Nakajima, T., 2002, Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. Journal of the atmospheric sciences, 59(3), 461-483.
Dadashi-Roudbari, A. and Ahmadi, M., 2020, Evaluating temporal and spatial variability and trend of aerosol optical depth (550 nm) over Iran using data from MODIS on board the Terra and Aqua satellites. Arabian Journal of Geosciences, 13(6), 1-23.
Dukhovny, V. A., Navratil, P., Rusiev, I., Stulina, G. and Roshenko, Y. E., 2008, Comprehensive remote sensing and ground-based studies of the dried Aral Sea bed. SIC ICWC, Tashkent, 173.
Floutsi, A. A., Korras-Carraca, M. B., Matsoukas, C., Hatzianastassiou, N. and Biskos, G., 2016, Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002–2014) based on Collection 006 MODIS-Aqua data, Science of the Total Environment, 551, 292-303.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O. and Lin, S. J., 2001, Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research: Atmospheres, 106(D17), 20255-20273.
Ginoux, P., Prospero, J. M., Torres, O. and Chin, M., 2004, Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation. Environmental Modelling & Software, 19(2), 113-128.
Gkikas, A., Proestakis, E., Amiridis, V., Kazadzis, S., Di Tomaso, E., Tsekeri, A., Marinou, E., Hatzianastassiou, N. and Pérez García-Pando, C., 2021, ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set. Atmospheric Measurement Techniques, 14(1), 309-334.
Hong, S. Y., Noh, Y. and Dudhia, J,. 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review, 134(9), 2318-2341.
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z. and Zhang, L., 2017, Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719-778.
Huang, J., Wang, T., Wang, W., Li, Z. and Yan, H., 2014, Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research: Atmospheres, 119(19), 11-398.
Iacono, M. J., Mlawer, E. J., Clough, S. A. and Morcrette, J. J., 2000, Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. Journal of Geophysical Research: Atmospheres, 105(D11), 14873-14890.
Indoitu, R., Orlovsky, L. and Orlovsky, N. 2012, Dust storms in Central Asia: spatial and temporal variations. Journal of Arid Environments, 85, 62-70.
Jones, S. L., Adams-Selin, R., Hunt, E. D., Creighton, G. A. and Cetola, J. D., 2012, December, Update on modifications to WRF-CHEM GOCART for fine-scale dust forecasting at AFWA. In AGU Fall Meeting Abstracts (Vol. 2012, pp. A33D-0188).
Kamali, S., Mofidi, A., Zarrin, A. and Nazaripour, H., 2017, Sensitivity studies of the forth-generation regional climate model simulation of dust storms in the Sistan plain, Iran. Modeling Earth Systems and Environment, 3(2), 769-781.
Kim, K.M., Kim, S.W., Choi, M., Kim, M., Kim, J., Shin, I., Kim, J., Chung, C.Y., Yeo, H., Kim, S.W. and Joo, S.J., 2021, Modeling Asian Dust Storms Using WRF‐Chem During the DRAGON‐Asia Field Campaign in April 2012. Journal of Geophysical Research: Atmospheres, 126(18), e2021JD034793.
LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E. and Cetola, J. D., 2019, The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3. 8.1. Geoscientific Model Development, 12(1), 131-166.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F. and Hsu, N. C., 2013, The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989.
Li, Z., Lau, W.M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M.G., Liu, J., Qian, Y., Li, J., Zhou, T. and Fan, J., 2016, Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929.
Meibodi, A. E., Abdoli, G., Taklif, A. and Morshedi, B., 2015, Economic modeling of the regional polices to combat dust phenomenon by using game theory. Procedia Economics and Finance, 24, 409-418.
Najafi, M. S., Sarraf, B. S., Zarrin, A. and Rasouli, A. A., 2017, Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Environmental Monitoring and Assessment, 189(9), 473.
Nowottnick, E. P., Colarco, P. R., Yorks, J. E., Burton, S. P. and da Silva Jr, A. M., 2017, December. Evaluating Aerosol Optical Properties in the NASA MERRA-2 Reanalysis Using NASA Lidar Observations. In AGU Fall Meeting Abstracts.
Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.K. and Bloom, S.,, 2011, MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24(14), 3624-3648.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C. and Jeong, M. J., 2014, MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24), 13-965.
Shao, Y., 2004, Simplification of a dust emission scheme and comparison with data. Journal of Geophysical Research: Atmospheres, 109(D10).
Shao, Y., Ishizuka, M., Mikami, M. and Leys, J. F., 2011, Parameterization of size‐resolved dust emission and validation with measurements. Journal of Geophysical Research: Atmospheres, 116(D8).
Shao, Y., Klose, M. and Wyrwoll, K. H., 2013, Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres, 118(19), 11-107.
Singh, C., Singh, S. K., Chauhan, P. and Budakoti, S., 2021, Simulation of an extreme dust episode using WRF-CHEM based on optimal ensemble approach. Atmospheric Research, 249, 105296.
Su, L. and Fung, J. C., 2015, Sensitivities of WRF‐Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia. Journal of Geophysical Research: Atmospheres, 120(21), 11-215.
Xi, X. and Sokolik, I. N., 2016, Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research: Atmospheres, 121(20), 12-270.
Yang, L., Mukherjee, S., Pandithurai, G., Waghmare, V. and Safai, P. D., 2019, Influence of dust and sea-salt sandwich effect on precipitation chemistry over the Western Ghats during summer monsoon. Scientific reports, 9(1), 1-13.
Yoon, J., von Hoyningen-Huene, W., Kokhanovsky, A. A., Vountas, M. and Burrows, J. P., 2012, Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations. Atmos. Meas. Tech, 5, 1271-1299.
Yuan, T., Chen, S., Huang, J., Zhang, X., Luo, Y., Ma, X. and Zhang, G., 2019, Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRF-Chem model. Atmospheric Environment, 207, 16-29.
Zhang, X.X., Claiborn, C., Lei, J.Q., Vaughan, J., Wu, S.X., Li, S.Y., Liu, L.Y., Wang, Z.F., Wang, Y.D., Huang, S.Y. and Zhou, J., 2020, Aeolian dust in Central Asia: Spatial distribution and temporal variability. Atmospheric Environment, 238, 117734.
Zhao, C., Liu, X., Leung, L.R., Johnson, B., McFarlane, S.A., Gustafson Jr, W.I., Fast, J.D. and Easter, R., 2010, The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments. Atmospheric Chemistry and Physics, 10(18), 8821.