Analysis of behavioral pattern the basic parameters in foreshocks with target for the prediction of big earthquakes in Iran

Document Type : Research Article

Authors

1 Ph.D. Graduated, Faculty of Geoscience, Kharazmi University, Tehran, Iran

2 Professor, Faculty of Geoscience, Kharazmi University, Tehran, Iran

3 Associate Professor, Department of Geology, Faculty of Science, Ferdowsi University Mashhad, Mashhad, Iran

4 Professor, Faculty of civil engineering and environment, Amirkabir University of Technology, Tehran, Iran

Abstract

The analysis of the basic parameters of the foreshocks is one of the most applied researches for risk reduction of earthquakes. Because identification of behavioral pattern of foreshocks can help researchers in detection of the active fault conditions in different areas. Also accurate analysis of these parameters help to study of earthquake prediction as more effective. In this study, we study about behavioral pattern of foreshocks in different tectonic zons in Iran. This research was conducted for prediction of probability the earthquakes with M>5 in Iran. According to this research, accurate analysis of the basic seismic parameters of foreshocks (including: relationship between depth and magnitude of foreshocks) is studied with target for the prediction of big earthquake in various zons for a ten-year period (from 2007 until 2017). The results of this research suggest that there are certain similarities in the magnitude-depth models for the one zone and also different for various zones. Therefore, this can be used as a precursor in earthquake prediction with Magnitude>5 for different zones in Iran. The important results presented in this article can be presented in the following cases:- Investigation of the information of seismicity parameters of foreshocks regarding the relationship between the focal depth of the main earthquake and the frequency of the foreshocks that used in some parts of the world as a precursor of earthquake suggested that main shocks with M>5 and shallow depth have more foreshocks abundances (Fig 2). - Due to the relationship between the type of fault with the occurrence and non-occurrence of aftershocks in different parts of the world, in the case of earthquakes greater than 5 in Iran, in earthquakes with reverse faults have relatively more aftershocks recorded compared to strike-slip faults.- The results of the statistical study conducted in this study show that for earthquakes with reverse fault, the frequency of foreshocks increases with magnitude. However, we do not see such conditions for earthquakes with faults of strike-slip.- The result of this study shows that more earthquake especially in Zagros zone and near salt domes happened without foreshocks. The reason for this is related to effect of salt dome on movement fault from slide to creep. The creep is a gradual movement and it is not usually accompanied by rapid movement such as slides that lead to large and recordable earthquakes.- Based on the present study on earthquakes, for the Zagros (especially in the northern and central part) and Central Iran and Sanandaj-Sirjan, can be used more confidently as a precursor of earthquake because in this zones earthquakes happened with more foreshocks.- In Zagros and Iran Markazi zone the relationship between variations of the depth and magnitude of foreshocks is fruitful for predicting of the main shocks.- For other zones we need to have more complete data bank that has earthquakes with higher frequency of foreshocks. Based on this data bank we can present suitable relations and models for the study of foreshock with the aim of predicting the big earthquakes.

Keywords

Main Subjects


پورکرمانی، م. و آرین، م.، 1376، لرزه زمین ساخت ایران. انتشارات دانشگاه شهید بهشتی.
تکنیک، و. و قدس، ع. ر.، 1393، برآورد ضخامت رسوبات در ایران با استفاده از تحلیل طیفی داده‌‌‌های مغناطیسی، شانزدهمین کنفرانس ژئوفیزیک ایران. 76-80.
زارع، م. و کامران‌زاده، ف.، 1393، پراکندگی لرزه‌خیزی در ایران، نشریه تحلیل فضایی مخاطرات محیطی. 1(4)، 39-51.
ساکت، ع.، 1386، بررسی سرشت لرزه‌‌خیزی استان کرمان و هرمزگان با هدف ارائه الگویی کاربردی برای پیش‌بینی زمین‌لرزه در این مناطق. پایان نامه کارشناسی‌ارشد. دانشگاه خوارزمی.
ساکت، ع.، فاطمی عقدا، س. م.، فهیمی فر، ا. و صادقی، ح.، 1399، تحلیل و روندیابی پارامترهای مبنایی پس لرزه­های زمین‌لرزه آذرماه 1391 زهان در استان خراسان جنوبی. نشریه زمین‌‌شناسی مهندسی دانشگاه خوارزمی، ۱۴(۴)، 635-668
ملکی، و.، شمالی.، ظ. ح. و حاتمی، م. ر.، 1391، بررسی مکان‌یابی زمین‌لرزه‌های محلی به روش غیرخطی و کاربرد آن در تعیین محل زمین­لرزه­های با بزرگی 4Mn≥ در ناحیه البرز مرکزی (2006-2010)، مجله فیزیک زمین و فضا، 38(4)، 23-37.
Ambraseys, N. N. and Melville, C. P., 1982, A history of Persian Earthquakes, Cambridge Earth Science Series, Cambridge University Press. London. ISBN-13 978-0-521-24112-0-Hardback.
Bolt, B. A., 1999, Earthquakes., W.H Freeman and Company., 4th edition. doi:10.1017/S0016756800253661.
Dodge, D. A., Beroza, G. C. and Ellsworth, W. L., 1995, Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation. J. Geophys. Res. 100, 9865–9880. Doi: 0148-0227/95/95 IB-• 871 05.00
Bouchon, M., Durand, V., Marsan, D., Karabulut, H. and Schmittbuhl, J., 2013, The long precursory phase of largest interplate earthquakes, Nat. Geosci., 6, 299–302, doi:10.1038/ngeo1770.
Dodge, D. A., Beroza, G. C. and Ellsworth, W. L., 1996, Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J. Geophys. Res. 101, 22371–22392. Doi: 0148-0227/96/96JB-02269509.00.
Hamada, K., 1988, Earthquake Prediction Technology. The Present State and Future development, Visitíng Research Officer, National Research Center for Disaster Preventio., 134-158.
Hauksson, E., Stock, J., Hutton, K, Yang, W., Vidal-Villegas, J.A and Kanamori, H., 2011, The 2010 Mw 7.2 El Mayor-Cucapah earthquake sequence, Baja California, Mexico and southernmost California, USA: Active seismotectonics along the Mexican Pacific margin. Pure Appl. Geophys.168, 1255–1277. Doi: 10.1007/s00024-010-0209-7.
Huang, Q., 2019, Seismicity Pattern Changes Prior to the 2008 Ms7.3 Yutian Earthquake., Entropy., 21, 118; doi:10.3390/e21020118
Gerassimos A., Papadopoulos, A.A., Minadakis, G., Triantafyllou, I. and Krassakis, P., 2020, Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone. Sensors, 20, 5681; doi:10.3390/s20195681.
Gulia, L. and Wiemer, S., 2019, Real-time discrimination of earthquake foreshocks and aftershocks, Nature, 574(7777), 193-199.
Jones, L. M., 1984, Foreshocks (1966-1980) in the San Andrias system, California. Bulletin of the Seismological Society of America, 74(4), 1361-1380.
Jones, L. M. and Molnar, P., 1979, Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. 84, 3596–3608. Doi: 10.1029/JB084iB07p03596.
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S. and Hirata, N., 2012, Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335, pp 705–708. doi: 10.1126/science.1215141.
Lin, C. H., 2004, Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan., Geophysical Research Letters, VOL. 31, L13601. DOI: 10.1029/2004GL019833.
McGuire, J. J., Boettcher, M. S. and Jordan, T. H., 2005, Foreshock sequences and short-term earthquake predictability on East Pacific rise transform faults. Nature 434, 457–461. Doi:10.1038/nature03377.
Minadakis, G. and Papadopoulos, G.A., 2016, Foreshock patterns preceding large earthquakes in the subduction zone of Chile., Geophysical Research Abstracts Vol. 18. Doi: 10.1007/s00024-016-1337-5.
Papadopoulos, G.A, Fiore, B.D. and Minadakis, G., 2011, Short-Term foreshocks and the prediction of mainshock in the aftermath of L’ Aquila earthquake: A Global Review., Geophysical Research Abstracts., Vol. 13, EGU2011-4540.
Rikitake, T, 1976, Earthquake prediction. Amsterdam: Elsevier.
Reasenberg, P. A., 1999, Foreshock occurrence before large earthquakes, Journal of Geophysical Research, 104(B3), 4755-4768.
Saket, A., Fatemi Aghda, S.M, Sadeghi, H. and Fahimifar, A., 2021, Analysis and routing of basic parameters of tasuj earthquake (April 2013, northwest of Iran) with an emphasis on feodetic data, foreshocks and large aftershocks, Journal of Applied Engineering Sciences. 11 (24), Issue 2/2021, 151-158.
Syafriani, S., Yulkifli, Z., Sabarani, A. and Raharjo, F.D., 2018, Correlation of seismotectonic parameter and seismic quiescence z-value in West Sumatra Indonesia, Journal of Physics Conference Series 1040(1):012050, DOI: 10.1088/1742-6596/1040/1/012050
Vavryčuk, V., 2015, Moment tensor decompositions revisited. J Seismol 19, 231–252. DOI:10.1007/s10950-014-9463-y.
Vorobieva Inessa, A. and Panza Giuliano, F., 1993, Prediction of the occurience of related strong earthquakes in Italy., International Centre for Theoretical Physics. IC/93/127.
Warsitzka. M., Kukowski, N. and Kley, J., 2015, Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading. Solid Earth, 6, 9–31, DOI:10.5194/se-6-9-2015.
Zanzerkia, E. E., Beroza, G. C. and Vidale, J. E., 2003, Waveform analysis of the 1999 Hector Mine foreshock sequence. Geophys. Res. Lett. 30, 1429. DOI: 10.1029/2002GL016383.