بابائیان، ا.؛ نجفی نیک، ز.؛ زابل عباسی، ف.؛ حبیبی نوخندان، م.؛ ادب، ح. و ملبوسی، ش. (1388). ارزیابی تغییر اقلیم کشور در دوره 2010-2039 میلادی با استفاده از ریزمقیاس نمایی دادههای مدل گردش عمومی جوECHOG . مجله جغرافیا و توسعه، 7(16)، 135-152.
جباری، ا. (1392). روشهای آماری در علوم محیطی و جغرافیایی، انتشارات دانشگاه رازی کرمانشاه، چاپ سوم، 294 صفحه.
کوهی، م. و پاکدامن، م. (1400). ارزیابی عملکرد مدلهای CMIP5 در تحلیل فراوانی دو متغیره مفصل- مبنای ویژگیهای خشکسالی در بخش جنوبی حوضه آبریز کارون. مجله فیزیک زمین و فضا، 48(1)، 153-172.
لطفی، ی.؛ مفتاح هلقی، م. و قربانی، خ. (1399). بررسی عدمقطعیت پیشیابیهای مدلهای گردش کلی جو: مطالعه موردی: ایستگاه هاشمآباد گرگان. مجله هواشناسی کشاورزی، 8 (1)، 75-79.
Almazroui, M., Saeed, S., Saeed, F., Islam, M. N., & Ismail, M. (2020). Projections of precipitation and temperature over the South Asian countries in CMIP6. J. Earth Systems and Environment, 4(2), 297-320.
Babaeian, I., Rahmatinia, A.E., Entezari, A., Baaghideh, M., Aval, M.B., & Habibi, M. (2021). Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100. J. Atmosphere, 12, 1704.
Baker, N., & Huang, H. (2013). A Comparative Study of Precipitation and Evaporation between CMIP3 and CMIP5 Climate Model Ensembles in Semiarid Regions. J. Climate, 27, 3731-3749.
Blázquez, J., & Nuñez, M.N. (2013). Analysis of Uncertainties in Future Climate Projections for South America: Comparison of WCRP-CMIP3 and WCRP-CMIP5 Models. J. Climate Dynamics, 41, 1039-1056.
Diaz-Nieto, J., & Wilby, R. L. (2005). A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. J. Climate Change, 69(2–3), 245–268.
Drobinski, P., Alonzo, B., Bastin, S., Da Silva, N., & Muller, C.J. (2016). Scaling of precipitation extremes with temperature in the French Mediterranean region: what explains the hook shape?. J. Geophys Res., 121(7), 3100-3119.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. J. Geosci. Model Dev., 9, 1937–1958.
Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G., & Power, S. (2020). Insights from CMIP6 for Australia's future climate. J. Earth's Future, 8(5), e2019EF001469.
Hardwick, J., Westra, R. S., & Sharma, A. (2010). Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity, J. Geophys Res Lett, 37, L22805.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press.
Jiang, J., Zhou, T., Chen, X., & Zhang, L. (2020). Future changes in precipitation over Central Asia based on CMIP6 projections. J. Environmental Research Letters, 15(5), 054009.
Leander, R., & Buishand, T.A. (2007). Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol., 332, 487–496.
Martinkova, M., & Kysely, J. (2020). Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes. J. Atmosphere, 11, 786.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., & Versick, S. (2017). Solar forcing for CMIP6 (v3.2). J. Geoscientific Model Development, 10, 2247-2302.
Mendez, M., Maathuis, B., Hein-Griggs, D., & Alvarado-Gamboa, L.-F. (2020). Performance Evaluation of Bias Correction Methods for Climate Change Monthly Precipitation Projections over Costa Rica. J. Water, 12, 482.
Molnar, P., Fatichi, S., Gaál, L., Szolgay, J., & Burlando, P. (2015). Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. J. Hydrol. Earth Syst. Sci., 19, 1753–1766.
O’Neill, B. C., Timothy R. C., Kristie, E., Paula, A., Harrison, E. K., & Kasper Kok, E. K. (2020). Achievements and needs for the climate change scenario framework. J. Nature climate change, 12, 1074-1084.
Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., & Haerter, J. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395, 199–215.
Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., & Arnold, J. G. (2016). CMhyd User Manual Documentation for preparing simulated climate change data for hydrologic impact studies, User manual, 1-17
Schmidli, J., Frei, C., & Vidale, P.L. (2006). Downscaling from gcm precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol., 26, 679–689.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. J. Geophysical Research: Atmospheres, 106(D7), 7183-7192.
Zamani, Y., Monfared, S. A. H., & Hamidianpour, M. (2020). A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran. J. Theoretical and Applied Climatology, 142(3), 1613-1623.