High- resolution Moho modeling in Makran subduction zone with spectral combination of seismic and gravity data

Document Type : Research Article

Authors

Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Abstract

The Mohorovičić discontinuity, often known as the Moho, marks the boundary separating the Earth's crust from the mantle. Techniques such as isostatic-gravity and seismic methods can be used to determine this division. The Moho marks the boundary between the continental and oceanic crust and the upper mantle. Simply put, the Moho acts as a physical/chemical boundary between the mantle and the crust and causes significant changes in geophysical properties such as seismic wave velocity, density, pressure, and temperature (Mooney and Masters, 1998; Martinck, 1994; Bagherbandi, 2011 and Dashtbazi et al., 2023). An accurate and high resolution Moho depth model in fields such as geodesy, geology, geophysics, geodynamic modeling, seismic risk assessment, stress field modeling caused by mantle convection (Li et al., 2018; Behr et al., 2022; Singh and Yadav, 2023; Heilman and Becker, 2022; Hashima et al., 2016; Eshagh et al., 2020; Eshagh, 2015 and Gido et al., 2019), and understanding seismic source mechanisms is important, among other applications (Gido et al., 2019 and Dashtbazi et al., 2023). Furthermore, a reliable Moho model can reveal details of crustal structure that provide valuable insights into the complexities of deeper mantle layers; related to the calculations and detailed examination of gravity, geothermal, geomagnetic models (Stalk et al., 2013). Although there are several Moho models, their accuracy and resolution are insufficient in the complex tectonic geometry of the Makran subduction zone (Brizi et al., 2021 and Heilman and Becker, 2022), because these zones show a complex Moho configuration (Shad Manaman et al., 1390; Taghizadeh Farhamand et al., 2015 and Dashtbazi et al., 2023). As a result, the existing models lack the necessary accuracy for the Makran subduction zone, a region approximately 1000 km long located in southeast Iran and southwest Pakistan (Byrne et al., 1992; Shad Manaman et al., 1390, Penney et al., 2017; Dashtbazi et al., 1398; Dashtbazi. et al., 2023).
In geophysical and geodetic studies, hybrid methods are mainly used to determine the Moho depth when seismic data with appropriate distribution and abundance are not available. These techniques include the Parker-Oldenberg method and the Wenning-Mines-Moritz method. In an effort to strengthen the existing Moho depth models in the Makran subduction zone, two distinct models named BC and SC through the integration of gravity (VMM) and seismic (CRUST1.0) data, which are processed through the Butterworth filter, spectral combination approaches and the least squares technique, was developed (Bagherbandi , 2011 and Dashtbazi et al., 2023). The resulting models provide a resolution of 5' x 5' degrees of arc, corresponding to a grid size of 9 x 9 km (Dashtbazi et al., 2023). The accuracy of these models was evaluated against four separate regional and local models. The resulting RMS values were 5.28, 1.55, 4.18, and 1.27 km for the BC model and 5.59, 1.17, 3.74, and 3.04 km for the SC model. Also, the Moho depth model obtained for the west Makran region in Iran significantly improved the accuracy and resolution of the Moho depth models in the studied area. The SC Moho model exhibits improved RMS metrics compared to the combined BC model, so we recommend it as the first priority. While the Moho depth models in our research really bring significant improvements to the existing models of the Makran subduction Moho zone, the integration of more detailed seismic data with SC and BC Moho models can improve the developed model for the Makran subduction zone. In the end, we suggest that a similar approach be adopted for the analysis of the Moho model in the eastern Makran region in Pakistan, which allows a comparative evaluation of the Moho depth and structure between the western and eastern parts in order to obtain a better picture of the Moho depth model of the Makran subduction zone.

Keywords

Main Subjects


دشتبازی، آ.؛ وثوقی، ب. و توکلی، ف. (1400). برآورد تغییر شکل‌‌های ارتفاعی قسمت پس کمان پهنه فرورانشی مکران با تداخل‌سنجی راداری. دومین کنفرانس ملی داده کاوی در علوم زمین، https://civilica.com/doc/1422762
دشتبازی، آ.؛ عمادی، ر. ا. و نانکلی، ر. (1398). تعیین میدان جابجایی هم‌لرزه در زلزله سال 2013 سراوان بر روی ایستگاه‌‌های دائمی GPS. مجله مهندسی نقشه‌برداری و اطلاعات مکانی، 10(2)، 13-26.‎
راستگو، م.؛ رحیمی، ح.؛ حمزه‌لو، ح. و غلامی، و. (1395). برآورد ساختار سرعت موج برشی و تغییرات عمق موهو در جنوب شرق ایران، با استفاده از وارون‌سازی همزمان پاشش امواج سطحی و تابع گیرنده موج P. مجله ژئوفیزیک ایران، 10(4)، 112-127.
شادمنامن، ن.؛ شمالی، ظ. ح. و میرزائی، ن. (1390). بررسی ساختار سه‌بُعدی سرعت برشی در گوشته بالایی و تغییرات عمق موهو در منطقه مکران. مجله فیزیک زمین و فضا. 37(2)، 153-169.
عبداعتدال، م.؛ شمالی، ظ. ح. و قیطانچی، م. ر. (1395). توموگرافی امواج لاو با استفاده از نوفه‌های لرزه‌ای محیطی در منطقه مکران. مجله علوم زمین، 26(102)، 147-152.
Abdollahi, S., Ardestani, V. E., Zeyen, H., & Shomali, Z. H. (2018). Crustal and upper mantle structures of Makran subduction zone, SE Iran by combined surface wave velocity analysis and gravity modeling. Tectonophysics, Elsevier, 747, 191–210.
Airy, G. B. (1855). On the Computation of the Attraction of Mountain Masses. Monthly Notices of the Royal Astronomical Society, 16, 42.
Bagherbandi, M. (2011). An Isostatic Earth Crustal Model : and Its Applications. Trita-SOM NV-2011:06, KTH Royal Institute of Technology, Geoinformatik och Geodesi, Urban Planning and Environment, School of Architecture and the Built Environment (ABE), KTH.
Bagherbandi, M. (2012). Combination of seismic and an isostatic crustal thickness models using Butterworth filter in a spectral approach. Journal of Asian Earth Sciences, Elsevier, 59, 240–248.
Bagherbandi, M., & Sjöberg, L. E. (2012a). Non-isostatic effects on crustal thickness: A study using CRUST2. 0 in Fennoscandia. Physics of the Earth and Planetary Interiors, Elsevier, 200, 37–44.
Bagherbandi, M., & Sjöberg, L. E. (2012b). A synthetic Earth gravity model based on a topographic-isostatic model. Studia Geophysica et Geodaetica, Springer, 56(4), 935–955.
Bagherbandi, M., Tenzer, R., Sjöberg, L. E., & Novák, P. (2013). Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. Journal of Geodynamics, Elsevier, 66, 25–37.
Bassin, C. (2000). The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU. 81: Fall Meet. Suppl., Abstract.
Becker, T. W., & Faccenna, C. (2011). Mantle conveyor beneath the Tethyan collisional belt. Earth and Planetary Science Letters, Elsevier, 310(3–4), 453–461.
Behr, W. M., Holt, A. F., Becker, T. W., & Faccenna, C. (2022). The effects of plate interface rheology on subduction kinematics and dynamics. Geophysical Journal International, 230(2), 796-812
Braitenberg, C., Wienecke, S., & Wang, Y. (2006). Basement structures from satellite‐derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth, Wiley Online Library, 111(B5).
Brizzi, S., Becker, T. W., Faccenna, C., Behr, W., van Zelst, I., Dal Zilio, L., & van Dinther, Y. (2021). The role of sediment accretion and buoyancy on subduction dynamics and geometry. Geophysical Research Letters, 48(20), e2021GL096266.
 
Byrne, D. E., Sykes, L. R., & Davis, D. M. (1992). Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. Journal of Geophysical Research: Solid Earth, 97(B1), 449-478
Čadek, O., & Martinec, Z. (1991). Spherical harmonic expansion of the Earth’s crustal thickness up to degree and order 30. Studia Geophysica et Geodaetica, Springer, 35(3), 151–165.
Claessens, S. J. (2002). A synthetic Earth model analysis, implementation, validation and application. MSc. thesis, Delft University of Technology.
Dashtbazi, A., Voosoghi, B., Bagherbandi, M., & Tenzer, R. (2023). A High-Resolution Global Moho Model from Combining Gravimetric and Seismic Data by Using Spectral Combination Methods. Remote Sensing, 15(6), 1562. https://doi.org/10.3390/rs15061562.
Eshagh, M., & Bagherbandi, M. (2014). Combined Moho Estimators. Geodynamics Research International Bulletin, Divison of Natural Sciences, Surveying and Mechanical Engineering, Department of Engineering Science, University West, 1(3), 1–11.
Eshagh, M., Bagherbandi, M., & Sjöberg, L. (2011). A combined global Moho model based on seismic and gravimetric data. Acta Geodaetica et Geophysica Hungarica, Akadémiai Kiadó, 46(1), 25–38.
Eshagh, M. (2015). On the relation between Moho and sub-crustal stress induced by mantle convection. Journal of Geophysics and Engineering, 12(1), 1-11.
Eshagh, M., Fatolazadeh, F., & Tenzer, R. (2020). Lithospheric stress, strain and displacement changes from GRACE-FO time-variable gravity: case study for Sar-e-Pol Zahab Earthquake 2018. Geophysical Journal International, 223(1), 379-397
Farhoudi, G., & Karig, D. E. (1977). Makran of Iran and Pakistan as an active arc system. Geology, 5(11), 664-668.
Gido, N. A. A., Bagherbandi, M., & Sjöberg, L. E. (2019). A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia. Geosciences Journal, Springer, 23(3), 377–389.
Grad, M., Tiira, T., & Group, E. S. C. W. (2009). The Moho depth map of the European Plate. Geophysical journal international, Blackwell Publishing Ltd Oxford, UK, 176(1), 279–292.
Haagmans, R. (2000). A synthetic Earth for use in geodesy. Journal of Geodesy, Springer, 74(7–8), 503–511.
Hashima, A., Becker, T. W., Freed, A. M., Sato, H., & Okaya, D. A. (2016). Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence of 3-D elastic structure around Japan. Earth, Planets and Space, 68(1), 1-15
Heiskanen, W. A., & Moritz, H. (1967). Physical Geodesy. WH Freeman and Company. San Francisco, CA.
Hirt, C., & Rexer, M. (2015). Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models–available as gridded data and degree-10,800 spherical harmonics. International Journal of Applied Earth Observation and Geoinformation, Elsevier, 39, 103–112.
Heilman, E., & Becker, T. W. (2022). Plume‐Slab Interactions Can Shut Off Subduction. Geophysical Research Letters, 49(13), e2022GL099286.
Holt, A. F., Royden, L. H., & Becker, T. W. (2017). The dynamics of double slab subduction. Geophysical Journal International, 209(1), 250-265.
Laske, G. (2002). Crustal model at 2×2, available at http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html.
Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0---A 1-degree global model of Earth’s crust. EGU General Assembly 2013, 2658.
Li, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic Earth model. Journal of Geophysical Research: Solid Earth, 123(9), 8056-8072.
Martinec, Z. (1994). The minimum depth of compensation of topographic masses. Geophysical Journal International, Blackwell Publishing Ltd Oxford, UK, 117(2), 545–554.
Meinesz, F. A. V. (1931). Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur. Bulletin geodesique, Springer, 29(1), 33–51.
Mooney, L., & Masters, C. (1998). 5.1: a global crustal model at 5x5 degrees. Journal of Geophysical Research, 103, 727–747.
Moritz, H. (1990). The figure of the Earth: theoretical geodesy and the Earth’s interior. Karlsruhe: Wichmann.
Oppenheim, A. V, Willsky, A., & Young, I. (1983). I, 1983, Signals and Systems. Englewood Cliffs: Prentice-Hall.
Pasyanos, M. E., Walter, W. R., Flanagan, M. P., Goldstein, P., & Bhattacharyya, J. (2004). Building and testing an a priori geophysical model for western Eurasia and North Africa. Pure and Applied Geophysics, Springer, 161(2), 235–281.
Penney, C., Tavakoli, F., Saadat, A., Nankali, H. R., Sedighi, M., Khorrami, F., ... & Priestley, K. (2017). Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophysical Journal International, 209(3), 1800-1830.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, Wiley Online Library, 117(B4).
Pratt, J. H. (1855). I. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India. Philosophical Transactions of the Royal Society of London, The Royal Society London, (145), 53–100.
Reguzzoni, M., Sampietro, D., & Sansò, F. (2013). Global Moho from the combination of the CRUST2. 0 model and GOCE data. Geophysical Journal International, Oxford University Press, 195(1), 222–237.
Richards, M. A., & Hager, B. H. (1984). Geoid anomalies in a dynamic Earth. Journal of Geophysical Research: Solid Earth, Wiley Online Library, 89(B7), 5987–6002.
Singh, S., & Yadav, R. (2023). Numerical modelling of stresses and deformation in Zagros-Iranian plateau region. EGUsphere, 2023, 1
Sjöberg, L. E. (2009). Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophysical Journal International, Blackwell Publishing Ltd Oxford, UK, 179(3), 1527–1536.
Sjöberg, L. E. (2011). Geoid determination by spectral combination of an Earth gravitational model with airborne and terrestrial gravimetry—a theoretical study. Studia Geophysica et Geodaetica, Springer, 55(4), 579–588.
Sjöberg, L. E., & Bagherbandi, M. (2011). A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2. 0. Acta Geophysica, Springer, 59(3), 502–525.
Sjöberg, L. E., & Bagherbandi, M. (2015). Encyclopedia of Geodesy: Isostasy–Geodesy. Springer.
Sjöberg, L. E., & Bagherbandi, M. (2017). Gravity inversion and integration. Springer.
Stolk, W., Kaban, M., Beekman, F., Tesauro, M., Mooney, W. D., & Cloetingh, S. (2013). High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas. Tectonophysics, Elsevier, 602, 55–68.
Szwillus, W., Afonso, J. C., Ebbing, J., & Mooney, W. D. (2019). Global crustal thickness and velocity structure from geostatistical analysis of seismic data. Journal of Geophysical Research: Solid Earth, 124(2), 1626-1652.
Taghizadeh-Farahmand, F., Afsari, N., & Sodoudi, F. (2015). Crustal thickness of Iran inferred from converted waves. Pure and Applied Geophysics, 172(2), 309-331.
Tenzer, R., & Bagherbandi, M. (2012). Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. International Journal of Geosciences, 3(5A), 918–929.
Tenzer, R., & Chen, W. (2014a). Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Science Informatics, Springer, 7(4), 265–276.
Tenzer, R., & Chen, W. (2014b). Expressions for the global gravimetric Moho modeling in spectral domain. Pure and Applied Geophysics, Springer, 171(8), 1877–1896.
Stolk, W., Kaban, M., Beekman, F., Tesauro, M., Mooney, W. D., & Cloetingh, S. (2013). High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas. Tectonophysics, Elsevier, 602, 55-68.
Wan, J., Xu, C., Luo, Z., Wu, Y., Zhou, B., & Yan, J. (2019). An Approach to Moho Topography Recovery Using the On-Orbit GOCE Gravity Gradients and Its Applications in Tibet. Remote Sensing, Multidisciplinary Digital Publishing Institute, 11(13), 1567.
Ye, Z., Tenzer, R., Sneeuw, N., Liu, L., & Wild-Pfeiffer, F. (2016). Generalized model for a Moho inversion from gravity and vertical gravity-gradient data. Geophysical Journal International, Oxford University Press, 207(1), 111–128.