Investigation of the Dorouneh fault system based on the focal mechanism of the earthquakes of the last two decades

Document Type : Research Article

Authors

1 Department of Physics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad. Iran.

2 International Institute of Earthquake Engineering and Seismology, Tehran, Iran.

Abstract

Fault plane solution is one of the most important tools to determine the orientation of the stress field. The focal mechanism of earthquakes can be applied to determine the direction of rupture propagation, the structure of the fault and the stress field of the region. Dorouneh fault is the largest fault in Iran after the main Zagros fault with about 800 km length. The purpose of this study is to investigate the seismicity, the stress fields and the focal mechanism of earthquakes that have occurred across the three main segments western, middle and eastern parts of the Dorouneh fault. Therefore, the calculation of the focal mechanism is performed using the P-wave first-motion polarity. Also the stress situation of the events and the recognition of fault planes are presented in this research. Along this fault, the blocks have moved in both left and right directions, but certainly one of its last movements has had a right lateral motion. In this study, the waveforms recorded at the seismic stations of the National Seismological Center of Tehran University (IRSC), the National Center of Broadband Seismic Network of Iran belong to the International Institute of Earthquake Engineering and Seismology (IIEES) and seismic stations of Seismological Research Center at the Ferdowsi University of Mashhad were used. At first, the waveforms of each seismic event were combined with each other, and then the relocation of the events were determined based on new data set of this study (Figure 2). A number of high quality earthquake with a magnitude of more than 3 and an average depth of 14 km have been selected (their list is presented in table1) to calculate the fault plane solution.
In order to calculate the mechanism of the recent earthquakes in the Khorasan region, interesting results have been obtained based on several methods (Assar Enayati, 1400). One of the common methods for estimating the mechanism of earthquakes, especially earthquakes with small magnitudes and at close distances from the epicenter, is the polarization of the first arrival of the P wave. Due to the dependence of the amplitude and polarization of the P wave on the focal mechanism, by determining the polarization of the first arrival of the seismic phase, the earthquake focal mechanism can be calculated. The results of focal mechanism solutions for significant events around Dorouneh fault show mostly left lateral strike slip motion which is consistent with the tectonic setting of the region. The difference in the focal mechanism of the events in the eastern and western parts of the fault is justified by the northward movement of the Lut block. The integration of data shows high accuracy in calculating the focal mechanism and more certainty about the results. Therefore, in the direction of the Dorouneh fault, the movements are both left-handed and right-handed from the seismic situation. The change in thefocal mechanism obtained from the seismic results, considering the stress axes changes, can represent the second and third order stress fields that balance the stress in this area today. The second-order stress can be related to continental rifting, isostasy adaptation, topography and deglaciation, and the third-order stress field can be related to the local stress source on a scale smaller than 100 km, which is influenced by the structural geometry, and interference between fault systems, topography and local density difference (Sheikh-ul-Islami et al., 2021).

Keywords

Main Subjects


توکلی، ر.؛ آقانباتی، س. ع.؛ (1388). بررسی و مقایسه رسوبات کرتاسه زیرین در دو حوضه رسوبی کپه داغ و ایران مرکزی، فصلنامه علوم زمین، 19(73)، 115-122.
جوادی کاریزکی، ح.ر. (1385). زمین‌ساخت جنبا، لرزه زمین‌ساخت وتحلیل سامانه گسل درونه، پایان نامه کارشناسی‌ارشد، پژوهشکده علوم زمین، سازمان زمین‌‌شناسی واکتشاف معدنی کشور ، 209ص.
حاجی میرزاعلیان، ف.؛ حاتمی، م. و ملکی، و. (1397). تعیین سازوکار کانونی زمین‌لرزه‌‌ها با بزرگی  در منطقه البرز با استفاده از قطبش اولین ‌رسید موج P و نسبت دامنه موج S به دامنه موج P. مجله ژئوفیزیک ایران،12(3)، 144-122.
حسامی، خ.؛ طبسی، ه. و جمالی، ف. (۱۳82). نقشه گسل‌های جنبا درایران، انتشارات پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.
حسامی، خ.؛ طبسی، ه. و مبین، پ. (۱۳۹۰). نقشه رقومی گسل‌های جنبا درایران، انتشارات پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.
صمدی، ز. (1393). تعیین تنش دیرین بر مبنای تحلیل لغزش گسل و سازوکار کانونی زمین‌لرزه‌‌ها در ناحیه سبلان، پایان نامه کارشناسی‌ارشد، دانشکده علوم زمین، دانشگاه شاهرود، 186ص.
عباسی، م. ر.؛ شبانیان، ا. و مبین، پ. (1389). بررسی زمین‌ساخت فعال در شمال خاور ایران: بینالود و کپه‌داغ. گزارش پژوهشی شماره 5117-پ89-22، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.
عصار عنایتی، م. (1400). ارزیابی پارامترهای چشمه زمین‌لرزه‌های مهم پهنه خراسان بر اساس مدل‌سازی تانسور ممان لرزه‌ای، پایان نامه کارشناسی‌ارشد زلزله‌شناسی، دانشگاه فردوسی مشهد، 191ص.
نبوی، م. (1355). دیباچه‌ای بر زمین‌‌شناسی ایران، سازمان زمین‌‌شناسی کشور، 109ص.
Alavi, M. (1991). Sedimentary and structural characteristics of the Paleo‐Tethys remnants in northeastern Iran. Geological Society of America Bullettin, 103(8), 983–992. https://doi.org/10.1130/0016‐7606, 1991.103
Anderson, E. M. (1942). The Dynamics of Faulting and Dyke Formation with Application to Britain: Oliver and Boyd, Edinburgh, 191 p.
Angelier, J., & Mechler, P. (1977). Sur une methode graphique de recherche des contraintes principales egalment utilisable en tectonique et en seismologie: La methode des diedres droits. Bulletin de Societie Geologique de France, 19, 1309-1318.
Angelier, J. (1979). Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56, T17–T26.
Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research, 89, 5835–5848.
Angelier, J. (1989). From orientation to magnitudes in paleostress determinations using fault slip data. J. struct. Geol., 11, 1/2, 37–50.
Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress, III. A new rapid direct inversion method by analytical means. Geophys. J. Int., 103, 363-376.
Angelier, J. (1994). Fault Slip Analysis & Paleostress reconstruction In Hancock, P. l. Continental Deformation, pergamon press Ltd. chaper 4, 53-100.
Angelier, J. (1998). A new direct inversion of earthquake focal mechanisms to reconstruct the stress tensor, Proc. EGS XXIII Gen. Assembly. Annales Geophysicae, 16, suppl. 1, C115.
Angelier, J. (2002). Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV – a new method free of choices among nodal planes. Geophys J. Int., 150, 588-609.
Bagheri, S., & Damani Gol, Sh. (2020). The Eastern Iranian Orocline. Earth-Science Reviews, 210, 103322. doi:10.1016/j.earscirev.2020.103322
Bagheri, S., & Stampfli, G. M. (2008). The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in Central Iran: New geological data, relationships and tectonic implications. Tectonophysics 451, 123–155.https://doi.org/10.1016/j.tecto.2007.11.047.
Berberian, M. (2014). Earthquakes and coseismic surface faulting on the Iranian Plateau. A historical, social, and physical approach. Oxford, UK: Elsevier. Developments in Earth Surface Processes, 17, 714 p.
Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran: Reply. Canadian Journal of Earth Sciences, 18(11), 1764–1766. https://doi.org/10.1139/e81‐163
Bott, M.H.P. (1959). The mechanisms of oblique slip faulting. Geol. Mag, 96, 109–117.
Carey, E., & Brunnier, M. B. (1974). Analyse theorique et numerique d.un modele mechanique elemetaire applique. l.etude d.une population de failles. C. R. Acad. Sci. Paris D, D179, 891-894.
Bagha Dashtaki, B., Lashkaripour, Gh., Ghafoori, M., & Hafezi Moghaddas, N. (2021). Numerical modeling of casing collapse in Gachsaran formation in Sirri-E oilfield in Persian Gulf. Journal of Petroleum Science and Engineering, 196, Doi:10.1016/j.petrol.2020.108009.
Delvaux, D., Moeys, R., Stapel, G., & Levi, K. (1997). Paleostress reconstructions and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic tectonic stress and fault kinematics. Tectonophysics, 282(1-4), 1-38.
Farbod, Y., Bellier, B., Shabanian, E., & Abbassi, M.R. (2011). Geomorphic and structural variations along the DorunehFault System (central Iran). Tectonics, 30, TC6014, doi: 10.1029/2011TC002889.
Farbod, Y., Shabanian, E., Bellier, O., Abbassi, M. R., Braucher, R., Benedetti, L., Bourlès, D., & Hessami, K. (2016). Spatial variations in late Quaternary slip rates along the Doruneh Fault System (Central Iran). Tectonics, 35(2), 386–406. https://doi.org/10.1002/2015TC003862.
Fattahi, M., Walker, R. T., Khatib, M. M., Dolati, A., & Bahroudi, A. (2007). Slip-rate estimate and past earthquakes on the Doruneh fault, eastern Iran. Geophysical Journal International, 168, 691–709.
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S.A., Walpersdorf, A., Hosseini, S., Tavakoli, P., Aghamohammadi, A., & Alijanzadeh, M. (2019). An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophys. J. Int., 217, 832–843.
McKenzie, D. P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59, 591-601.
Mohajer-Ashjai, A., Behzadi, H., & Berberian, M. (1975). Reflections on the rigidity of theLut Block and recent crustal deformation in eastern Iran. Tectonophysics, 25, 281-301.
Mousavi, Z., Fattahi, M., Khatib, M., Talebian, M., Pathier, E., Walpersdorf, A., Alastair Sloan, R., Alexander L.T., Rhodes, E.D., Clive, F., Dodds, N., & Walker, R.T. (2021). Constant slip rate on the Doruneh strike-slip fault, Iran, averaged over late Pleistocene, Holocene, and decadal timescales. Tectonics, 40, e2020TC006256. https://doi.org/10.1029/2020TC006256.
Muttoni, G., Mattei, M., Marco, B., Zanchi, A., & Berra, F. (2009). The drift history of Iran from the Ordovician to the Triassic. Geological Society London Special Publications, 312(1), 7-29.
Nozaem, R., Mohajjel, M., Rossetti, F., Della, M., Vignaroli, G., Yassaghi, A., & Eliassi, M. (2013). Post‐Neogene right‐lateral strikeslip tectonics at the north‐western edge of the Lut Block (Kuh‐e‐Sarhangi Fault), Central Iran. Tectonophysics, 589, 220–233. https://doi.org/10.1016/j.tecto.2013.01.001.
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y., & Lo, C.H., (2013). Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos. 180–181, 234–251. Doi:/10.1016/j.lithos.2013.05.009.
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Yang, H.M., Chu, C.H., Lee, H.Y., & Lo, C.H., (2012). Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut-Sistan region, eastern Iran. Chem. Geol. 306–307, 40–53. doi.org/10.1016/j.chemgeo.2012.02.020.
Rashidi, A., Kianimehr, H., Yamini-Fard, F., Tatar, M., & Zafarani, H. (2022). Present Stress Map and Deformation Distribution in the NE Lut Block, Eastern Iran: Insights from Seismic and Geodetic Strain and Moment Rates. Pure Appl. Geophys., 179 (2022), 1887–1917. https://doi.org/10.1007/s00024-022-03015-x.
Sheikholeslami, M.R., Mobayen, P., Javadi, H.R., & Ghassemi, M.R. (2021(. Stress field and tectonic regime of Central Iran from inversion of the earthquake focal mechanisms. Tectonophysics, doi:10.1016/j.tecto.2021.228931.
Sperner, B., Muller, B., Heidbach, O., Delvaux, D., Reinecker, J. & Fuchs, K. (2003). Tectonic stress in the Earth's crust: advances in the World Stress Map project. In: NIEUWLAND, D. A. (ed.) New Insights into Structural Interpretation and Modelling. Geological Society, London, Special Pub., 212, 101-116.
Tadayon, M., Rossetti, F., Zattin, M., Calzolari, G., Nozaem, R., Salvini, F., Faccenna, C., Khodabakhshi, P., & Frassi, C. (2018). The long-term evolution of the Dorouneh Fault region (Central Iran): A key to understanding the spatio-temporal tectonic evolution in the hinterland of the Zagros convergence zone. Geological Journal, doi:10.1002/gj.3241
Tchalenko, J. S. (1973). The Kashmar (Turshiz) 1903 and Torbat-e Heidariyeh (south) earthquakes in Central Khorassan (Iran), Ann. Geofis., 26(1), 29–40.
Wallace, R.E. (1951). Geometry of shearing stress and relation to faulting. Journal of Structural Geology, 59 (2), 118-130.
Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., Djamour, Y., Nankali, H., & Sedighi, M. (2014). Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data. Journal of Geophysical Research: Solid Earth, 119(2), 1359–1383. Doi: 10.1002/2013JB010620.