The Effect of Variations of EEJ on the Ionospheric TEC at Different Longitudinal Sectors using Ground-based Observation

Document Type : Research Article

Authors

1 Corresponding Author, Department of Physics, CNCS, Institute of Geophysics Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia. E-mail: alexye9@yahoo.com

2 Department of Physics, Washera Geospace and Radar Science Research Laboratory, Bahir Dar University, Bahir Dar, Ethiopia. E-mail: melessewnigussie@yahoo.com

Abstract

In this work, the longitudinal variations of equatorial electrojet (EEJ) and its effect on the diurnal behavior of the EIA during quiet days in the period of 2011- 2012 were investigated. EEJ has been estimated using a pair of ground-based magnetometers data from six longitudinal sectors, and the Global Positioning System (GPS) TEC have also been obtained at each longitudinal sector from three stations at Northern and Southern crests and trough regions. The statistical results show that the monthly mean variations of EIA crest are consistent with that of the strength of equatorial electrojet in most regions of the investigation. The mean EEJ and EIA crests are strongest around equinoctial months in the Peruvian and Southeast Asian sectors followed by the West African regions throughout the years investigated. The weakest EEJ peaks and TEC of EIA are observed over the Pacific sectors throughout the periods of investigation. The monthly mean characteristics of EEJ/counter electrojets (CEJ) and EIA are also presented. The results also show that the CEJ events occur more frequently in the Brazilian sectors followed by in the Peruvian and West African sectors. However, in most of the equinoctial months, the strongest equatorial EIA trough and weakest of EIA crests are observed in the Brazilian sector. The temporal extent of the well-developed EIA crest and its properties show a substantial dependence on the diurnal characteristics of the EEJ for each specific day.

Keywords

Main Subjects


Abdu, M.A., Ramkumar, T.K., Batista, I.S., Brum, C.G.M., Takahashi, H., Reinisch, B.W., & Sobral, J. H.A. (2006). Planetary wave signatures in the equatorial atmosphere–ionosphere system, and mesosphere- E- and F-region coupling. J. Atmospheric and Solar-Terrestrial Physics, 68, 509–522. https://doi.org/10.1016/j.jastp.2005.03.019.
Cherkos, A. M., & Nigussie, M. (2022). A study of spatio-temporal variability of equatorial electrojet using long-term ground-observations. J. Adv. Space Res., 69(2), 869–888. https://doi.org/10.1016/j.asr.2021.10.014.
Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., & Kudeki, E. (2002). Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophysical Research Letters, 29(12), 37–1 -37-4.https://doi.org/10.1029/2001GL014562.
Anderson, D., Anghel, A., Chau, J., & Veliz, O. (2004). Daytime vertical ExB drift velocities inferred from ground-based magnetometer observations at low latitudes. J. Space Weather, 2(11), https://doi.org/10.1029/2004SW000095.
Anderson, D., Anghel, A., Chau, J., Yumoto, K., Bhattacharyya, A., & Alex, S. (2006). Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions; ILWS WORKSHOP 2006, GOA (2006).
Bagiya, M. S., Joshi, H. P., Iyer, K. N., Aggarwal, M., Ravindran, S., & Pathan, B. M. (2009). TEC variations during low solar activity period (2005--2007) near the equatorial ionospheric anomaly crest region in India. Annales Geophysicae, 27(3), 1047 – 1057. https://doi.org/10.5194/angeo-27-1047-2009, 2009.
Balan, N., Otsuka, Y., Nishioka, M., Liu, J. Y., & Bailey, G. J. (2013). Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Physics, 118(5), 2660–2669, doi:10.1002/jgra.50275.
Basavaiah, N. (2012). Geomagnetism: solid earth and upper atmosphere perspectives. Springer Science & Business Media.
Basu, S., Basu, S., Huba, J., Krall, J., McDonald, S. E., Makela, J. J., & Groves, K. (2009). Day-to-day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3. J. Geophys. Res., 114, A04302, doi:10.1029/2008JA013899.
Briggs, B. H. (1984). The variability of ionospheric dynamo currents. J. Atmospheric and Terrestrial Physics, 46(5), 419–429, https://doi.org/10.1016/0021-9169(84)90086-2.
Bolaji, O., Owolabi, O., Falayi, E., Jimoh, E., Kotoye, A., Odeyemi, O., & Onanuga, K. (2017). Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum. Ann. Geophys., 35(1), 123–132. https://doi.org/10.5194/angeo-35-123-2017.
Chandrasekhar, N.P., Arora, K., & Nagarajan, N. (2014). Characterization of seasonal and longitudinal variability of EEJ in the Indian region. J. Geophys. Res. Space Phys., 119(12), 242– 259, https://doi.org/10.1002/2014JA020183.
Chapman, S. (1951). The equatorial electrojet as detected from the abnormal electric current distribution above huancayo, peru, and elsewhere, Archiv Fuer Meteorologie, Geophysik und Bioklimatologie, Serie A, 4, 368–390, https://doi.org/10.1007/BF02246814.
Chen, C. H., Liu, J. Y., Yumoto, K., Lin, C. H., & Fang, T. W. (2008). Equatorial ionization anomaly of the total electron content and equatorial electrojet of ground-based geomagnetic field strength. J. Atmospheric and Solar-Terrestrial Physics, 70(17), 2172–2183, https://doi.org/10.1016/j.jastp.2008.09.021.
Deshpande, M. R., Rastogi, R. G., Vats, H. O., Klobuchar, J. A., Sethia, G., Jain, A. R.,  Subbarao, B. S., Patwari, V. M., Janve, A. V., Rai, R. K., Singh, M.,  Gurm, H. S., & Murthy, H. S. (1977). Effect of electrojet on the total electron content of the ionosphere over the Indian subcontinent, Nature, 265(5612), 599-600, https://doi.org/10.1038/267599a0.
Dias, M. A. L., Fagundes, P. R., Venkatesh, K., Pillat, V. G., Ribeiro, B. A. G., Seemala, G. K., & Arcanjo, M. O. (2020). Daily and monthly variations of the equatorial ionization anomaly (EIA) over the Brazilian sector during the descending phase of the Solar Cycle 24. J. Geophysical Research: Space Physics,  125(9), https://doi.org/10.1029/2020JA027906.
Fambitakoye, O., & Mayaud, P. N. (1976a). Equatorial electrojet and regular daily variation sri. a determination of the equatorial electrojet parameters. J. Atmospheric and Terrestrial Physics, 38(1), 1–17, https://doi.org/10.1016/0021-9169(76)90188-4.
Fambitakoye, O., & Mayaud, P. N. (1976b). Equatorial electrojet and regular daily variation srii. the centre of the equatorial electrojet. J. Atmospheric and Terrestrial Physics, 38(1), 19–26, https://doi.org/10.1016/0021-9169(76)90189-6.
Fejer, B.G., Farley, D.T., Woodman, R.F., & Calderon, C. (1979). Dependence of equatorial F region vertical drifts on season and solar cycle. J. Geophysical Research: Space Physics, 84, 5792–5796, https://doi.org/10.1029/JA084iA10p05792
Fejer, B.G. (1997). The electrodynamics of the low-latitude ionosphere: Recent results and future challenges. J. Atmospheric and Solar-Terrestrial Physics, 59(13), 1456–1482, https://doi.org/10.1016/S1364-6826(96)00149-6.
Fejer, B.G., & Tracy, B., D. (2013). Lunar tidal effects in the electrodynamics of the low latitude ionosphere. J. Atmospheric and Solar-Terrestrial Physics, 103, 76–82, https://doi.org/10.1016/j.jastp.2013.01.008.
Ghosh, P., Otsuka, Y., Mani, S., & Shinagawa, H. (2020). Day-to-day variation of pre-reversal enhancement in the equatorial ionosphere based on GAIA model simulations. J. Earth, Planets and Space, 72(1), 1–8, https://doi.org/10.1186/s40623-020-01228-9.
Guizelli, L. M., Denardini, C. M., Moro, J., & Resende, L. C. A. (2013). Climatological study of the daytime occurrence of the 3-meter EEJ plasma irregularities over Jicamarca close to the solar minimum (2007 and 2008). J. Earth, Planets and Space, 65, 39- 44, https://doi.org/10.5047/eps.2012.05.008.
Gouin, P. (1962). Reversal of the magnetic daily variation at Addis Ababa. Nature, 193(4821), 1145–1146.https://doi.org/10.1038/1931145a0.
Hajra, R., Chakraborty, S. K., & Paul, A. (2009). Electrodynamical control of the ambient ionization near the equatorial anomaly crest in the Indian zone during counter electrojet days. J. Radio Sci., 44(3), 1-13.https://doi.org/10.1029/2008RS003904
Huang, Y. N., Cheng, K., & Chen, S. W. (1989). On the equatorial anomaly of the ionospheric total electron content near the northern anomaly crest region. J. Geophysical Research: Space Physics, 94(A10), 13515–13525, https://doi.org/10.1029/JA094iA10p13515
Huang, L., Huang, J., Wang, J., Jiang, Y., Deng, B., Zhao, K., & Lin, G. (2013). Guoguo: Analysis of the north--south asymmetry of the equatorial ionization anomaly around 110 E longitude. J. Atmospheric and Solar-Terrestrial Physics, 102, 354–361, https://doi.org/10.1016/j.jastp.2013.06.010.
Huang, L., Wang, J., Jiang, Y., Huang, J., Chen, Z., & Zhao, K. (2014). A preliminary study of the single crest phenomenon in total electron content (TEC) in the equatorial anomaly region around 120 E longitude between 1999 and 2012. J. Advances in Space Research, 54(11), 2200 – 2207, https://doi.org/10.1016/j.asr.2014.08.021.
Iyer, K. N., Deshpande, M. R., & Rastogi, R. G. (1976). The equatorial anomaly in ionospheric Total Electron Content and the Equatorial Electrojet current strength, Proc. Indian. Acad. Science, 84A, 129-138, https://doi.org/10.1007/BF03046803.
Jonah, O.F., de Paula, E.R., Muella, M.T.A.H., Dutra, S.L.G., Kherani, E.A., Negreti, P.M.S., & Otsuka, Y. (2015). TEC variation during high and low solar activities over South American sector. J. Atmos. Sol-Terr. Phys., 135, 22-35, https://doi.org/10.1016/j.jastp.2015.10.005.
Khadka, S. M., Valladares, C., Pradipta, R., Pacheco, E., & Condor, P. (2016). On the mutual relationship of the equatorial electrojet, TEC and scintillation in the Peruvian sector. Radio Sci., 51(6), 742–751.
Khadka, S. M., Valladares, C. E., Sheehan, R., & Gerrard, A. J. (2018). Effects of electric field and neutral wind on the asymmetry of equatorial ionization anomaly. J. Radio Science, 53(5), 683–697, https://doi.org/10.1029/2017RS00642.
Liu, J.Y., Chen, Y.I., Chuo, Y.J., & Tsai, H.F. (2001). Variations of ionospheric total electron content during the Chi-Chi earthquake. J. Geophysical Research Letters, 28, 1383-1386, https://doi.org/10.1029/2000GL012511.
Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann. Geophys., 21(10), 2083–2093, https://doi.org/10.5194/angeo-21-2083-2003.
Mo, X.H., Zhang, D.H., Liu, J., Hao, Y.Q., Ye, J.F., Qin, J.S., Wei, W. X., & Xiao, Z. (2018). Morphological characteristics of equatorial ionization anomaly crest over Nanning region. Radio Science, 53, 37–47, https://doi.org/10.1002/2017RS006386.
Mo, X., & Zhang, D. (2021). A comparative study of the northern and southern equatorial ionization anomaly crests in the East-Asian sector during 2006–2015. Advances in Space Research, 68(3), 1461-1472.
Mungufeni, P., Habarulema, J.B., Migoya-Orué, Y., & Jurua, E. (2018). Statistical analysis of the correlation between the equatorial electrojet and the occurrence of the equatorial ionisation anomaly over the East African sector. Ann. Geophys., 36, 841–853, https://doi.org/10.5194/angeo-36-841-2018, 2018.
Olwendo, O.J., Yamazaki, Y., Cilliers, P.J., Baki, p., & Doherty, P. (2016). A study on the variability of ionospheric total electron content over the East African low-latitude region and storm time ionospheric variations. Radio Sci., 51, 1503–1518, https://doi.org/10.1002/2015RS005785.
Pandey, K., Sekar, R., Anandarao, B.G., Gupta, S.P., & Chakrabarty, D. (2018). On the occurrence of afternoon counter electrojet over Indian longitudes during June solstice in solar minimum. Journal of Geophysical Research: Space Physics, 123, 2204–2214, https://doi.org/10.1002/2017JA024725.
Paul, A., Roy, B., Ray, S., Das, A., & DasGupta, A. (2011). Characteristics of intense space weather events as observed from a low latitude station during solar minimum. J. Geophysical Research: Space Physics, 116, A10307, https://doi.org/10.1029/2010JA016330.
Rabiu, A.B., Folarin, O.O., Uozumi, T., Hamid, N.S.A., & Yoshikawa, A. (2017). Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. In Annales Geophysicae, 35, 535–545, https://doi.org/10.5194/angeo-35-535-2017.
Rama Rao, P. V. S., Gopi Krishna, S., Niranjan, K., & Prasad, D. S. V. V. D. (2006). Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Annales Geophysicae, 24, 3279–3292.
Rastogi, R.G., & Klobuchar, J. A. (1990). Ionospheric electron content within the equatorial F 2 layer anomaly belt. J. Geophysical Research: Space Physics, 95, 19045–19052, https://doi.org/10.1029/JA095iA11p19045
Rastogi, R. (2004). Electromagnetic induction by the equatorial electrojet. J. Geophysical Journal International, 158, 16–31, https://doi.org/10.1111/j.1365-246X.2004.02128.x.
Romero‐Hernandez, E., Denardini, C. M., Takahashi, H., Gonzalez‐Esparza, J. A., Nogueira, P. A. B., de Padua, M. B., Lotte, R. G., Negreti, P. M. S., Jonah, O. F.,  Resende, L. C. A., Rodriguez-Martinez6 , M., Sergeeva,  M. A. , Barbosa Neto, P. F.,  de la Luz3, V., Galera Monico, J. F., & Aguilar-Rodriguez, E. (2018). Daytime ionospheric TEC weather study over Latin America. Journal of Geophysical Research: Space Physics, 123(12), doi: https://doi.org/10.1029/2018JA025943
Seemala, G.K., & Valladares C.E. (2011). Statistics of total electron content depletions observed over the Southern American continent for the year 2008. Radio Sci., 46(05), 1-14, https://doi.org/10.1029/2011RS004722.
Siddiqui, T.A., Stolle, C., Lühr, H., & Matzka, J. (2015). On the relationship between weakening of the northern polar vortex and the lunar tidal amplification in the equatorial electrojet. J. Geophysical Research: Space Physics, 120, 10006–10019, https://doi.org/10.1002/2015JA021683.
Soares, G., Yamazaki, Y., Matzka, J., Pinheiro, K., Morschhauser, A., Stolle, C., & Alken, P. (2018). Equatorial counter electrojet longitudinal and seasonal variability in the American sector. J. Geophysical Research: Space Physics, 123, 9906-9920, https://doi.org/10.1029/2018JA025968.
Stolle, C., Manoj, C., Lühr, H., Maus, S., & Alken, P. (2008). Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies. J. Geophysical Research, 113(A9), https://doi.org/10.1029/2007JA012781.
Talari, P., & Panda, S. K. (2019). Occurrences of counter electrojets and possible ionospheric TEC variations round new Moon and full Moon days across the low latitude Indian region, Journal of Applied Geodesy, 13(3), 245-255. https://doi.org/10.1515/jag-2019-0014.
Tsai, H. F., Liu, J. Y., Tsai, W. H., Liu, C. H., Tseng, C. L., & Wu, C. C. (2001). Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J. Geophysical Research: Space Physics, 106(A12), 30363–30369, https://doi.org/10.1029/2001JA001107.
Venkatesh, K., Fagundes, P.R., Seemala, Gopi, K., de Jesus, R., de Abreu, A. J., & Pillat, V. G. (2014). On the performance of the IRI-2012 and NeQuick2 models during the increasing phase of the unusual 24th solar cycle in the Brazilian equatorial and low-latitude sectors. J. Geophysical Research: Space Physics, 119, 5087–5105, https://doi.org/10.1002/2014JA019960.
Venkatesh, K., Fagundes, P.R., Prasad, D.S.V.V.D., Denardini, C.M., De Abreu, A.J., De Jesus, R., & Gende, M. (2015). Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. J. Geophys. Res. Space Physics, 120, 9117–9131, https://doi.org/10.1002/2015JA021307.
Wan, X., Zhong, J., Xiong, C., Wang, H., Liu, Y., Li, Q., Kuai, J., & Cui, J. (2022). Seasonal and Interhemispheric Effects on the Diurnal Evolution of EIA: Assessed by IGS TEC and IRI-2016 over Peruvian and Indian Sectors, Remote Sens., 14(107), https://doi.org/10.3390/rs14010107.
Yizengaw, E., & Moldwin, M.B. (2009). African meridian B-field education and research. J. Earth, Moon, and Planets, 104,  237-246, https://doi.org/10.1007/s11038-008-9287-2.
Zhang, R., Liu, L., Yu, Y., Le, H., & Chen, Y. (2020). Westward electric fields in the afternoon equatorial ionosphere during geomagnetically quiet times. J. Geophysical Research: Space Physics, 125, https://doi.org/10.1029/2020JA028532.