Spatial Changes of Seasonal Reference Evapotranspiration in Iran Based on CMIP6 Models

Document Type : Research Article

Authors

1 Department of Geography, Faculty of Literature and Human Sciences, Razi University, Kermanshah, Iran.

2 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.

3 Department of Statistics, Faculty of Science, Razi University, Kermanshah, Iran.

Abstract

The aim of the present study is to investigate the spatial changes of seasonal ETo in Iran in the future (2020–2050), based on SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios of CMIP6 models (MRI-ESM2 and GFDL-ESM4) compared to the observed data (1992–2014). The FAO56-PM method was used to estimate ETo, and the CV was utilized to investigate the changes. The results showed that ETO will decrease in all seasons across the country under all GFDL-ESM4 scenarios (except winter under SSP5-8.5). However based on the scenarios of the MRI-ESM2 model for 2020–2050, the amount of ETO will increase in the southeastern and southern regions in winter, but in the northwest, west, east, and areas corresponding to the Zagros highlands, ETo will decrease. In spring and summer, ETo will increase in the Caspian Coast, northeastern, western and interior areas of Iran, and even in the northwest (in summer). In the fall, ETO will increase in the eastern and western regions of the country, east of the Caspian Sea and the northern Iranian plateau. Fall, summer, winter and spring, respectively, represent the highest levels of spatial changes in ETo, but it will expand only according to the MRI-ESM2 model in the winter (21% – 25%) under SSP1-2.6. Other seasons show fewer changes than in the past, based on models. Accordingly, the need for detailed planning in water resource management is emphasized, especially in the southern and eastern parts of Iran toward the inner areas.

Keywords

Main Subjects


Ajjur, S. B., & Al-Ghamdi, S. G. (2021). Evapotranspiration and water availability response to climate change in the Middle East and North Africa, Climatic Change, 166(3), 1-18. https://doi.org/10.1007/s10584-021-03122-z.
Al-Hasani, A. A, J., & Shahid, S. (2022). Spatial Distribution of the Trends in Potential Evapotranspiration and its Influencing Climatic Factors in Iraq,‏ Theoretical and Applied Climatology, 150, 677–696. https://doi.org/10.1007/s00704-022-04184-4.
Alizadeh, A., & Salehnia, N. (2014). Application of Aridity Index in Determination of Potential Evapotranspiration for Estimating Crop Water Use in Iran, Iranian Journal of Irrigation and Drainage, 8(1), 136-144‏. https://idj.iaid.ir/article_54612.html?lang=en.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56, Rome: Food and Agriculture Organization of the United Nations, 56(97), e156.‏
Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994). An update for the definition of reference evapotranspiration, ICID bulletin, 43(2), 1-34.‏
Amare, S., Langendoen, E., Keesstra, S., Ploeg, M. V. D., Gelagay, H., Lemma, H., & Zee, S. E. V. D. (2021). Susceptibility to gully erosion: Applying random forest (RF) and frequency ratio (FR) approaches to a small catchment in Ethiopia. Water, 13(2), 216.‏ https://doi.org/10.3390/w13020216.
Asadi, M., & Karami, M. (2020). Estimation of evapotranspiration in Fars province using experimental indicators, Iranian Journal of Applied Researches in Geographical Sciences, 20(56), 159-175. https://www.sid.ir/paper/379096/en.
Bakhtiari, B., Khanjani, M. J., & Fadaei-Kermani, E. (2017). Differentiation of computed sum of hourly and daily reference evapotranspiration in a semi-arid climate, Journal of Applied Research in Water and Wastewater, 4(2), 358-362.‏
Begueria, S., Vicente-Serrano, S. M., & Begueria, M. S. (2017). Package ‘spei’. Calculation of the Standardised Precipitation-Evapotranspiration Index. https://cran.r-project.org/web/packages/SPEI/index.html.
Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). Shiny: Web Application Framework for R. https://CRAN.R-project.org/package=shiny. Version 1.0.3
Cheshmberah, F., & Zolfaghari, A. A. (2019). The effect of climate change on future reference evapotranspiration in different climatic zones of Iran, Pure and Applied Geophysics, 176(8), 3649-3664. https://doi.org/10.1007/s00024-019-02148-w.
Dong, Q., Wang, W., Shao, Q., Xing, W., Ding, Y., & Fu, J. (2020). The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections, International Journal of Climatology, 40(1), 235-254. https://doi.org/10.1002/joc.6206.
Eslami, A., & Ghahraman, B. (2013). Sensitivity analysis and uncertainty parameters affecting in the estimation of reference evapotranspiration in models with different mathematical structure. Iranian, Journal of lrrigation and Drainage, 7(1), 68-79. https://www.sid.ir/paper/131644/en.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016.
Gudarzi, M., Hosseini, S. A., & Mohammadi, N. (2018). Estimate of Potential Evapotranspiration in Kavir, Desert and Makren coast, The 13th National Conference on Watershed Management Science & Engineering of Iran and the 3rd National Conference on Conservation of Natural Resources and Environment, https://civilica.com/doc/827329.
Heydari, M. M., Tajamoli, A., Ghoreishi, S. H., Darbe-Esfahani, M. K., & Gilasi, H. (2015). Evaluation and calibration of Blaney–Criddle equation for estimating reference evapotranspiration in semiarid and arid regions, Environmental Earth Sciences, 74, 4053-4063.‏ https://doi.org/10.1007/s12665-014-3809-1.
Heydari., T. K. S., & Khoshkhou, Y. (2019). Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios,‏ Iranian Journal of Applied Researches in Geographical Sciences,  19(53), 157-176. https://doi.org/10.29252/jgs.19.53.157.
Hijmans, R. J., Van-Etten J., Cheng, J., Mattiuzzi, M., Sumner, M., & Greenberg, J. A. (2015). Package ‘raster’, R package, 1:734.
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T F D, Qin G K et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO978110741532.
Kadkhodazadeh, M., Valikhan, A. M., Morshed, B. A., & Farzin, S. (2022). A new methodology for reference evapotranspiration prediction and uncertainty analysis under climate change conditions based on machine learning. multi criteria decision making and Monte Carlo methods, Sustainability, 14(5), 2601. https://doi.org/10.3390/su14052601.
Kermani., E. F., Abbas-Barani, G., & Javad, Khanjani, M. (2014). Developing a framework for compatibility analysis of predictive climatic variables distribution with reference evapotranspiration in probabilistic analysis of water requirement, Journal of Applied Research in Water and Wastewater, 1(2), 66-73.‏
Keshavarz, A., Malkian, R., Najhandali, A., & Beigi, A. (2021). The collection of documents related to the national and strategic document of food security evolution; Explanation of the country's water situation (No. 8). Iran: Publication of Agricultural Education.
Khanmohammadi, N., Rezaie, H., Montaseri, M., & Behmanesh, J. (2017). The effect of different meteorological parameters on the temporal variations of reference evapotranspiration, Environmental Earth Sciences, 76, 1-13.‏ https://doi.org/10.1007/s12665-017-6871-7.
Lashkari, H., & Mohammadi, Z. (2019). Study on the role of annual movements of Arabian subtropical high pressure in the late start of precipitation in southern and southwestern Iran, Theoretical and Applied Climatology, 137(3), 2069-2076. https://doi.org/10.1007/s00704-018-2716-x.
Li, Y., Liang, K., Bai, P., Feng, A., Liu, L., & Dong, G. (2016). The spatiotemporal variation of reference evapotranspiration and the contribution of its climatic factors in the Loess Plateau, China. Environmental Earth Sciences, 75, 1-14. https://doi.org/10.1007/s12665-015-5208-7.
Li, Y., Yu, W., Wang, K., & Ma, X. (2019). Comparison of the aridity index and its drivers in eight climatic regions in China in recent years and in future projections, International Journal of Climatology, 39(14), 5256-5272. https://doi.org/10.1002/joc.6137.
Liu, X., LI, C., Zhao, T., & Han, L. (2020). Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models, Atmospheric and Oceanic Science Letters, 13(6), 568-575. https://doi.org/10.1080/16742834.2020.1824983. 
Maghsoudi, M. (2020). Desert landscapes and landforms of Iran, Springer Nature.
Majumder, M. (2015). Impact of urbanization on water shortage in face of climatic aberrations, Springer.
Masoompour, S. J., Rajaei, S., & Yeganehfar, M. (2014). Temporal-spatial variability and evapotranspiration trend of the reference plant in Iran, Iranian Journal of Applied Researches in Geographical Sciences, 14(34), 7-25. https://jgs.khu.ac.ir/article-1-2067-fa.html.
Miri, M., Masoompour, S. J., Raziei, T., Jalilian, A., & Mahmodi, M. (2021). Spatial and temporal variability of temperature in Iran for the twenty-first century foreseen by the CMIP5 GCM models, Pure and Applied Geophysics, 178(1), 169-184. https://doi.org/10.1007/s00024-020-02631-9.
Modaresi, F., & Araghi, A. (2023). Projecting future reference evapotranspiration in Iran based on CMIP6 multi-model ensemble, Theoretical and Applied Climatology,‏ https://doi.org/10.1007/s00704-023-04465-6.
Mokhtar, A., He, H., Alsafadi, K., Li, Y., Zhao, H., Keo, S., Bai, CH., Abuarab, M., Zhag, Ch., Elbaagoury, K., Wang, J., & He, Q. (2020). Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China, Environmental Earth Sciences, 79, 1-21.‏ https://doi.org/10.1007/s12665-020-09007-1.
Mulla, D. J., & Mc-Bratney, A. B. (2001). Soil spatial variability. Soil physics companion, CRC Press, Boca Raton, 343-373.
Newton, I. H., Islam, G. T., Islam, A. S., Razzaque, S., & Bala, S. K. (2021). A conjugate application of MODIS/Terra data and empirical method to assess reference evapotranspiration for the southwest region of Bangladesh, Environmental Earth Sciences, 80(6), 223.‏ https://doi.org/10.1007/s12665-021-09482-0.
Nouri, M., Homaee, M., & Bannayan, M. (2017). An Assessment of reference evapotranspiration changes during the 21st century in some semi-arid regions of Iran,‏ Iranian Journal of Soil and Water Research, 48(2), 241-252. https://doi.org/10.22059/ijswr.2017.62578.
Obada, E., Alamou, E. A., Chabi, A., Zandagba, J., & Afouda, A. (2017). Trends and changes in recent and future Penman-Monteith potential evapotranspiration in Benin (West Africa), Hydrology, 4(3), 38. https://doi.org/10.3390/hydrology4030038.
Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources, Science, 313 (5790), 1068-1072. https://doi.org/10.1126/science.1128845.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombarddozzi, D., Nabel, J. E. M. S., Otlle, C., Poulter, B., Zaehle, S., & Running, S. W. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrology and earth system sciences, 24(3), 1485-1509. https://doi.org/10.5194/hess-24-1485-2020.
Parding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Rati, O., Viktor, E., El Zohbi, J., Christensen, O. B., & Loukos, H. (2020). GCMeval–An interactive tool for evaluation and selection of climate model ensembles, Climate Services, 18, 100167.‏ https://doi.org/10.1016/j.cliser.2020.100167.
Pour, S. H., Abd-Wahab, A. K., Shahid, S., & Ismail, Z. B. (2020a). Changes in reference evapotranspiration and its driving factors in peninsular Malaysia, Atmospheric Research, 246, 105096. https://doi.org/10.1016/j.atmosres.2020.105096.
Pour, S. H., Abd-Wahab, A. K., & Shahid, S. (2020b). Spatiotemporal changes in aridity and the shift of drylands in Iran, Atmospheric Research, 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704.
Qi, P., Zhang, G., Xu, Y. J., Wu, Y., & Gao, Z. (2017). Spatiotemporal changes of reference evapotranspiration in the highest-latitude region of China, Water, 9(7) 493. https://doi.org/10.3390/w9070493.
Rahimi, M. (2012). Analyzing the temporal and spatial variation of fog days in Iran, Pure and applied geophysics, 169(5), 1165-1172. https://doi.org/10.1007/s00024-011-0326-y.
Raziei, T., & Parehkar, A. (2021). Performance evaluation of NCEP/NCAR reanalysis blended with observation-based datasets for estimating reference evapotranspiration across Iran, Theoretical and Applied Climatology, 144(3), 885-903. https://doi.org/10.1007/s00704-021-03578-0.
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Kalvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, Sh., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenoder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Sterefler, J., Drouet, F., Krey, V., Luderer, G., Harmsen, m., Takahashi, A., Baumestark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Oberteiner. M., Tabeau, A., & Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview, Global Environmental Change 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009.
Shah, S. A. (2022). Hargreaves-Samani method: Estimation of historical annual, seasonal, and monthly Reference Evapotranspiration (ETo) in Dadu District, Pakistan, Journal of Applied Research in Water and Wastewater, 9(1), 30-39.‏
Sharafi, S., & Mohammadi-Ghaleni, M. (2021). Calibration of empirical equations for estimating reference evapotranspiration in different climates of Iran, Theoretical and Applied Climatology 145(3), 925-939. https://doi.org/10.1007/s00704-021-03654-5.
Shirmohammadi, Z., Kouhi, M., Mohammadian, A., Habibi-Nokhandan, M., Mirzaee, M. J., & Mododi, M. N. (2018). Spatial and temporal characteristics of Refrence evapotranspiration using CRU gridded datasets and prediction of its changes during future periods in Khorasan Razavi, Iranian Journal of Climate Research, 9(33), 89-109. https://clima.irimo.ir/article_77189.html?lang=en.
Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., Sabzipavar, A. A., Ranjbar Saadatabadi, A., Ranjbar, F., Rousta, I., Zawar-Reza, P., Khoshakhlagh, F., Soltanzadeh, I., Babu, C. A., Azizi. G. H., & Martin, M. V. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran, Theoretical and Applied Climatology, 126(3-4), 775-795. https://doi.org/10.1007/s00704-015-1609-5.
Tabari, H., Marofi, S., Aeini, A., Talaee, P. H., & Mohammadi, K. (2011). Trend analysis of reference evapotranspiration in the western half of Iran, Agricultural and forest meteorology, 151(2), 128-136.  https://doi.org/10.1016/j.agrformet.2010.09.009.
Tabari, H., & Talaee, P. H. (2011). Analysis of trends in temperature data in arid and semi-arid regions of Iran, Global and Planetary Change, 79(1-2), 1-10. https://doi.org/10.1016/j.gloplacha.2011.07.008.
Wang, Z., Zhan, C., Ning, L., & Guo, H. (2021). Evaluation of global terrestrial evapotranspiration in CMIP6 models, Theoretical and Applied Climatology, 143(1), 521-531. https://doi.org/10.1007/s00704-020-03437-4.
Zarrin, A., & Salehabadi, N. (2019). Drought projection in Tehran based on CMIP6 models, 6th international-regional conference on climate change. Iran. Tehran, https://civilica.com/doc/1002617/.
Zhao, J., Xia, H., Yue, Q., & Wang, Z. (2020). Spatiotemporal variation in reference evapotranspiration and its contributing climatic factors in China under future scenarios, International Journal of Climatology, 40(8), 3813-3831. https://doi.org/10.1002/joc.6429.