A statistical investigation of the tropical cold point tropopause temperature in Tehran and Shiraz in January and July (2000-2022)

Document Type : Research Article

Author

Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran.

Abstract

The tropopause is part of the fundamental structure of the atmosphere, separating the dynamically and chemically distinct troposphere and stratosphere. Based on the concepts as, thermal, dynamical, and chemical or ozone, three different tropopauses are defined. The thermal tropopause is defined as the lowest level above 500hPa at which the lapse rate decreases to 2 K/km or less, provided that also the average lapse rate between this level and all higher levels within 2 km does not exceed 2 K/km. The dynamical tropopause is defined in terms of sharp changes in the potential vorticity which be a measures of the stratification and wind shears in air masses. The original concept of the dynamical tropopause is based on the isentropic gradient of potential vorticity which is typically determined in a thin layer with absolute potential vorticity values within 1 and 4 potential vorticity units. Chemical tropopause is another type of tropopause that is defined based on the vertical concentrations of the trace gases such as ozone mixing ratio and water vapor. In tropical latitudes, a useful reference for distinguishing the tropopause from the stratosphere is the cold point, where the temperature minimum occurs. The cold-point tropopause is the temperature minimum in the tropopause region. The cold point tropopause this acts as the thermal boundary between the troposphere and the stratosphere whose height varies from 18 km in the tropics to about 8 km in the poles. This boundary plays a crucial role in the troposphere-stratosphere exchange.
In the present study, radiosonde data used are obtained from the Integrated Global Radiosonde Archive at the NOAA National Climatic Data Center. Daily temperature profiles in January and July 2000-2022 are taken from two radiosonde stations in the central and south of Iran including Tehran (51.31°E, 35.56°N), and Shiraz stations (52.60°E, 29.53°N), and are analyzed.
Using radiosonde temperature profiles (green lines) at Tehran stations in a) January and b) July 2021, cold-point tropopause and monthly mean temperature (black lines) are here presented (see text). The blue plus signs are cold point tropopauses from individual profiles and the red plus sign is the average of all blue plus signs. The black thick line is the mean temperature profile and the purple plus sign is the coldest point of the mean temperature profile. ΔT is the difference between the red and purple plus signs. Although we only showed two months of data in January and July here to visualize the difference between the mean of cold point tropopause and the coldest point of the mean temperature profile, our calculation for ΔT is for the 2000-2022 period.
The results showed that Shiraz station's lowest temperature of the tropical cold point tropopause is colder than the Mehrabad station of Tehran, and the lowest temperature of the tropical cold point tropopause is estimated in July. This difference is related to combining geographical-latitudinal characteristics of the two stations and the development of thermal low pressure in July over Iran, which has caused an increase in height and a decrease in the temperature of the tropical tropopause. Also, the results showed the average tropical cold point tropopause temperature in the stations is 2.5 degrees kelvin lower than the average cold point of the vertical temperature profile, and the thermal low pressure and cold high pressure are the cause of this difference.

Keywords

Main Subjects


برهانی، ر. و احمدی‌گیوی، ف. (1397). تحلیل آماری-دینامیکی تاشدگی‌های وردایست منطقه جنوب‌غرب آسیا در سال‌های 2000 تا 2015. مجله ژئوفیزیک ایران، 12(2)، 127-146.
برهانی، ر.؛ احمدی‌گیوی، ف.؛ قادر، س. و محب‌الحجه، ع. ر. (1397). مطالعه فراوانی و توزیع تاشدگی وردایست و تغییرات فصلی آن در سال‌های 2015-2013 با تأکید بر منطقه جنوب‌غرب آسیا. مجله فیزیک زمین و فضا، 44(3)، 607-624.
کیخسروی، ق. (1394). تحلیل همدیدی – آماری تغییرات ارتفاع لایه تروپوپاوز بعنوان نمایه‌ای از تغییر اقلیم در خراسان رضوی. مجله آب و هواشناسی کاربردی، 2(2)، 33-48.
لشکری، ح.؛ داداشی رودباری، ع. و محمدی، ز. (1396). تحلیل تغییرات ماهانه ارتفاع لایه تروپوپاز بر روی ایران. مجله پژوهش‌های جغرافیای طبیعی، 49(1)، 113-133.
عساکره، ح.؛ دارند، م. و زند کریمی، س. (1399). ویژگی‌های توصیفی وردایست بر روی جو ایران در فصل گذر. پژوهش‌های جغرافیای طبیعی، 52(2)، 333-350.
مرادی، م. (1401). اثر گرمایش ناگهانی پوشن‌سپهر در تغییرات ارتفاع وردایست گرمایی در نیمکره شمالی(2020-1979). مجله فیزیک زمین و فضا، 48(3)، 731-748.
مرادی، م. (1402). بررسی آماری ویژگی‌های وردایست در تهران و شیراز در ماه‌های ژانویه و ژوئیه (2022-2000). مجله پژوهش‌های جغرافیای طبیعی، 55(1)، 39-55.
Annamalai, V., & Mehta, S.K. (2022). Extreme variability of the tropical tropopause over the Indian monsoon region. Climate Dynamics, 59, 2929–2948.
Birner, T. (2010). Residual circulation and tropopause structure. J. Atmos. Sci., 67.2582–2600.
Eugenio, R. G., & Macalalad, E.P. (2021). Monthly Observations of Cold-point Tropopause Temperature and Height for 2008 in the Philippines Using COSMIC GPS Radio Occultation. Journal of Physics: Conference Series, Volume 1936, 2021 11th International Conference on Applied Physics and Mathematics (ICAPM 2021) 1-3 February 2021, Shanghai, China.
Gettelman, A., Salby, M.L., & Sassi, F. (2002). Distribution and influence of convection in the tropical tropopause region. Journal of Geophysical Research, 107(D10). 1-12.
Gettelman, A., Birner, T., Eyring, V., Akiyoshi, H., Bekki, S., Brühl, C., Dameris, M., Kinnison, D. E., Lefevre, F., Lott, F., Mancini, E., Pitari, G., Plummer, D. A., Rozanov, E., Shibata, K., Stenke, A., Struthers, H., & Tian, W. (2009). The tropical tropopause layer 1960–2100. Atmos. Chem. Phys., 9. 1621–1637.
Grise, K., Thompson, D., & Birner, T. (2010). A global survey of static stability in the stratosphere and upper troposphere. J. Clim., 23.2275–2292.
Han, Y., Xie, F.,Zhang, S., Zhang , R., Wamg, F., & Zhang , J. (2017). An Analysis of Tropical Cold-Point Tropopause Warming in 1999. Advances in Meteorology. Volume 2017. Article ID 4572532, 11 pages https://doi.org/10.1155/2017/4572532.
Hoskins, B. J., McIntyre, M. E., & Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol.Soc., 111, 877–946.
Jain, A. R., Panwar, V., Mandal, T. K., Rao, V. R., Goel, A., Gautam, R., Das, S.S., & Dhaka, S. K. (2010). Mesoscale convection system and occurrence of extreme low tropopause temperatures: observations over Asian summer monsoon region. In Annales Geophysicae, 28(4), 927-940. Göttingen, Germany: Copernicus Publications.
Kim, J., & Son, S.W. (2012). Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultaion measurements. J. Clim., 25. 5343–5360.
Kim, J. E., & Alexander, M. J. (2015). Direct impacts of waves on tropical cold point tropopause temperature. Geophys, Res. Lett., 42. 1584–1592.doi:10.1002/2014GL062737.
Muhsina, M., Sunilkumara, S.V., Venkat Ratnamb, M., Parameswarana, K., Krishna Murthyc, B.V. & Emmanuel, M. (2018). Effect of convection on the thermal structure of the troposphere and lower stratosphere including the tropical tropopause layer in the south Asian monsoon region. Journal of Atmospheric and Solar-Terrestrial Physics, 169 (9). 52-65.
Randel, W.J., Wu, A.F., & Rios, W.R. (2003). Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024. doi:10.1029/2002JD002595.
Sunilkumar, S. V., Babu, A., & Parameswaran, K. (2013). Mean structure of the tropical tropopause and its variability over the Indian longitude sector. Climate dynamics, 40, 1125-1140.
Tegtmeier, S., Anstey, J., Davis, S., Dragani, R., Harada, Y., Ivanciu, I., Pilch Kedzierski, R., Krüger, K., Legras, B., Long, C., Wang, J., Wargan, K., & Wright, J. S. (2020). Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer. Atmospheric Chemistry and Physics., 20(2). 753-770. doi:10.5194/acp-20-753-2020.
Tomikawa, Y., Nishimura, Y., & Yamanouchi, T. (2009). Characteristics of tropopause and tropopause inversion layer in the polar region. SOLA. 5. 144–144. doi:10.2151/sola.2009-036.
Wang, W., Matthes, K., Scmidt, T., & Neef, L. (2013). Recent variability of the tropical tropopause inversion layer. Geophysical Research Letters., 40(33).6308–6313.
Wilhelmsen, H., Ladstadter, F., Schmidt, T., & Steiner, A. K. (2020). Double tropopauses and the tropical belt connected to ENSO. Geophysical Research Letters, 47, https://doi.org/10.1029/2020GL089027.
World Meteorological Organization. (1957). Meteorology: A three dimensional science: Second session of the Commission for Aerology. WMO Bull., 4(4).134–138.
Zangl, G., & Hoinka, K.P. (2001). The tropopause in the Polar Regions. Journal of Climate, 14. 3117-3139.