Evaluation of the performance of ERA5 reanalysis data in estimating multiple types of CAPE and CIN convective parameters in upper-air stations in Iran

Document Type : Research Article

Author

Atmospheric Science Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.

Abstract

Estimation of thunderstorm characteristics is important worldwide. Due to scattered nature of upper-Air soundings data, reanalysis data is used as another approach. However, using reanalysis data without any evaluation process can lead to increased uncertainty. Iran with its diverse climate conditions, experiences thunderstorms in different parts of the country in different seasons. In this research, around 90,000 sounding measurements were used to evaluate the accuracy of ECMWF Reanalysis v5 (ERA5) in determining all types of the two convective parameters of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN). The investigation area are limited to nine upper-air stations located in various climate regions including dry, coastal, mountainous and urban areas. The stations are in Tabriz, Mashhad, Tehran, Kermanshah, Esfahan, Ahwaz, Kerman, Shiraz and Zahedan. The analysis was done over a 31-yr period (from the beginning of 1990 to the end of 2020). Data measured at both 00:00 and 12:00 UTC were used. Four calculated types of CAPE parameter were (a) CAPE, (b) surface-based convective available potential energy (SB-CAPE), (c) 0–500 m mixed layer convective available potential energy (ML-CAPE) and (d) most-unstable convective available potential energy (MU-CAPE). Four computed types of CIN parameter were (a) CIN, (b) surface-based convective inhibition (SB-CIN), (c) 0–500 m mixed-layer convective inhibition (ML-CIN) and (d) most-unstable convective inhibition (MU-CIN). The main difference between various types of each convective parameter is referred to that of the focused parcel. The analysis was done using the statistical indices of correlation coefficient (R), mean error (ME), absolute mean error (AME) and root mean square error (RMSE). To filter incomplete and unreal observational profiles, some criteria were imposed on the observational data for quality control. The criteria were as (a) both profiles of temperature and dew point temperature should be measured, (b) the sounding should pass the 6-km height above the surface, (c) the profiles should contain measurements at more than 10 pressure levels, (d) lapse rate in mid-troposphere should be less than 9 K/km, and (e) lapse rate in low-troposphere should be less than 11 K/km. Some criteria were imposed after the calculation of the convective parameters including (a) MU-CAPE values that should be less than 8000 J/kg, (b) ML-CAPE values should be less than 6000 J/kg, and (c) CIN values should be more than -1000 J/kg. The results showed that the two parameters of ML-CAPE and ML-CIN in most stations produced the highest values of correlation coefficient for calculated convective parameters using observational and reanalysis data. Based on ME and MAE indices, ML-CAPE, ML-CIN, and SB-CIN parameters generated the least error in most stations. The RMSE index showed that ML-CAPE and ML-CIN produced the lowest values of error in most stations. In a conclusion, the obtained results indicated that the two convective parameters of CAPE and CIN calculated using air mass in the mixed layer (ML-CAPE and ML-CIN) from ERA5 reanalysis data provided the most reliable values over most stations compared to that of the observational data. Hence, it is suggested that the last mentioned type for the two studied convective parameters be considered for future research studies, especially in simulation of thunderstorms.

Keywords

Main Subjects


صادقی حسینی، س.ع. و رضائیان، م. (1385). بررسی تعدادی از شاخص‌های ناپایداری و پتانسیل بارورسازی ابرهای همرفتی منطقه اصفهان. مجله فیزیک زمین و فضا، 32(2)، 83-98.
طهماسبی­ پاشا، ا.؛ میرزایی، م. و محب الحجه، ع. (1400). ارتباط شاخص‌های همرفتی و دورپیوندی در منطقه غرب آسیا. مجله ژئوفیزیک ایران، 15(3)، 1-26.
قویدل رحیمی، ی.؛ عباسی، ا. و فرج­زاده، م. (1397)، واکاوی دینامیک و ترمودینامیک شدیدترین چرخند حارّه­ای مؤثر بر سواحل جنوبی ایران. نشریه تحلیل فضایی مخاطرات محیطی، 5(1)، 97-112.
مجرد، ف.؛ کوشکی، س.؛ معصوم­پور، ج. و میری، م. (1396). تحلیل شاخص های ناپایداری توفان­های تندری در ایران با استفاده از داده­های بازتحلیل. نشریه تحلیل فضایی مخاطرات محیطی، 4، 33-48.
Allen, J.T., & Karoly, D.J. (2014). A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. International Journal of Climatology, 34, 81–97.
Brooks, H.E, Anderson, A.R., Riemann, K., Ebbers, I., & Flachs, H. (2007). Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmospheric Research, 83, 294–305.
Brooks, H.E., Lee, J.W., & Craven, J.P. (2003). The spatial distribution of severe thunderstorms and tornado environments from global reanalysis data. Atmospheric Research, 67–68, 73–94.
Bunkers, M.J., Klimowski, B.A., & Zeitler, J.W., (2002). The importance of parcel choice and the measure of vertical wind shear in evaluating the convective environment, Preprints, 21st Conf. Severe Local Storms, San Antonio. American Meteorological Society, J117–J120, 11-16.
Craven, J. P., Jewell, R. E., & Brooks, H. E. (2002). Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Weather and Forecasting, 17(4), 885-890.
Doswell, III.C. A., & Rasmussen, E.N. (1994). The effect of neglecting the virtual temperature correction on CAPE calculations. Weather Forecasting, 9, 625–629.
Doswell, III, C. A., Brooks, H. E., & Maddox, R.A. (1996). Flash flood forecasting: An ingredients-based methodology. Weather Forecasting, 11, 560–581.
Gensini, V. A., Mote, T. L., & Brooks, H. E. (2014). Severe-thunderstorm reanalysis environments and collocated radiosonde observations. Journal of Applied Meteorology and Climatology, 53, 742–751.
Grünwald, S., & Brooks, H. E. (2011). Relationship between sounding derived parameters and the strength of tornadoes in Europe and the USA from reanalysis data. Atmospheric Research, 100, 479–488.
Hobbs, P. V., & Wallace, J. M., (1977). Atmospheric Science: An Introductory Survey. Academic Press, 350 pp.
Hodges, K. I., Lee, R. W. & Bengtsson, L. (2011). A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. Journal of Climate, 24, 4888–4906.
Marsh, P. T., Brooks, H. E., & Karoly, D. J. (2009). Preliminary investigation into the severe thunderstorm environment of Europe simulated by the Community Climate System Model 3. Atmospheric Research, 93, 607–618.
Pilguj, N., Taszarek, M., Allen, J. T., & Hoogewind, K. A. (2022). Are trends in convective parameters over the United States and Europe consistent between reanalyses and observations?. Journal of Climate, 35(12), 3605-3626.
Pistotnik, G., Groenemeijer, P., & Sausen, R. (2016). Validation of convective parameters in MPI-ESM decadal hindcasts (1971–2012) against ERA-Interim reanalyses. Meteorology, 25, 753–766.
Púcik, T., Groenemeijer, P., Rýva, D., & Kolár, M. (2015). Proximity soundings of severe and nonsevere thunderstorms in central Europe. Monthly Weather Review, 143, 4805–4821.
Púčik, T., Groenemeijer, P., Rädler, A.T., Tijssen, L., Nikulin, G., Prein, A.F., van Meijgaard, E., Fealy, R., Jacob, D., & Teichmann, C. (2017). Future changes in European severe convection environments in a regional climate model ensemble. Journal of Climate, 30, 6771–6794.
Riemann-Campe, K., Fraedrich, K., & Lunkeit, F. (2009). Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. Atmospheric Research, 93, 534–545.
Saleh, N., Gharaylou, M., Farahani, M. M., & Alizadeh, O. (2023). Performance of Lightning Potential Index, Lightning Threat Index, and the Product of CAPE and Precipitation in the WRF Model. Earth and Space Science, 10(9), e2023EA003104.
Singh, M. S., Kuang, Z., Maloney, E. D., Hannah, W. M., & Wolding, B. O. (2017). Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proceedings of the National Academy of Sciences, 114(44), 11657-11662.
Taszarek, M., Brooks, H. E., & Czernecki, B. (2017). Sounding-derived parameters associated with convective hazards in Europe. Monthly Weather Review, 145, 1511–1528.
Taszarek, M., Brooks, H. E., Czernecki, B., Szuster, P., & Fortuniak, K. (2018). Climatological aspects of convective parameters over Europe: A comparison of ERA-Interim and sounding data. Journal of Climate, 31(11), 4281-4308.
Taszarek, M., Pilguj, N., Allen, J. T., Gensini, V., Brooks, H. E., & Szuster, P. (2021a). Comparison of convective parameters derived from ERA5 and MERRA-2 with rawinsonde data over Europe and North America. Journal of Climate, 34(8), 3211-3237.
Taszarek, M., Allen, J. T., Marchio, M., & Brooks, H. E. (2021b). Global climatology and trends in convective environments from ERA5 and rawinsonde data. NPJ climate and atmospheric science, 4(1), p.35.
Thorne, P. W., & Vose, R. S. (2010). Reanalyses suitable for characterizing long-term trends. Bull. Amer. Meteor. Soc., 91, 353–361.
Varga, Á. J., & Breuer, H. (2022). Evaluation of convective parameters derived from pressure level and native ERA5 data and different resolution WRF climate simulations over Central Europe. Climate Dynamics, 58(5-6), 1569-1585.
Viceto, C., Marta-Almeida, M., & Rocha, A. (2017). Future climate change of stability indices for the Iberian Peninsula. International Journal of Climatology, 37, 4390–4408.
Wang, Y. C., Pan, H.L., & Hsu, H. H. (2015). Impacts of the triggering function of cumulus parameterization on warm‐season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. Journal of Geophysical Research: Atmospheres, 120(20), 10-681.
Wang, Z., Franke, J. A., Luo, Z., & Moyer, E. J. (2021). Reanalyses and a high-resolution model fail to capture the “high tail” of CAPE distributions. Journal of Climate, 34(21), 8699-8715.
Westermayer, A. T., Groenemeijer, P., Pistotnik, G., Sausen, R., & Faust, E. (2017). Identification of favorable environments for thunderstorms in reanalysis data. Meteorology, 26, 59–70.