Evaluation of WRF-Chem Model Performance in Wind Field Simulation in Dust Storm April 2022 in Khuzestan Province

Document Type : Research Article

Authors

1 Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

2 Department of Earth Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran.

Abstract

The dust phenomenon is one of the natural phenomenon that is formed by both human and natural factors that causes adverse environmental consequences every year in many arid regions worldwide, including Iran.
Predicting the emission and transport of dust and aerosols can be useful to mitigate harmful effects. However, despite numerous studies, predicting dust events and their transport remains challenging. Wind speed, vegetation, and soil structure are the most important factors in local and regional dust emission. The WRF-Chem model is a popular numerical model used for simulating wind fields, dust, and air pollution, and is of interest to researchers worldwide.
The Khuzestan province, located in the southwest of Iran, is affected by both cross-border and internal dust events due to its geographical location. Wind plays a crucial role in the emission and transport of dust to this region. Due to the increasing number of dust days and their intensity in the province, predicting and simulating wind and dust fields is of utmost importance. Therefore, finding the optimal configuration of wind field during dust events in Khuzestan is necessary. Given the significance of this issue, the aim of this study is to evaluate the wind field simulated by the WRF-Chem model under both dust and non-dust conditions, and to determine the optimal configuration for each conditions.
To achieve this, meteorological and environmental data from 2020 to 2022 were collected from the Iran meteorology and environmental organizations. During the period of April 7-25, 2022, dust was recorded on some days in Khuzestan province, while on other days, no dust was observed. In the second step, the wind field of 700 hPa level was analyzed using GFS data in April 2022. The WRF-Chem model was run from 7 to 25 April 2022 with GFS data for four different model configurations with two boundary layer schemes YSU and MYJ as well as Lin and WMS6 cloud microphysics schemes for two horizontal resolutions of 27 and 9 km.
The results of the model were compared with the initial GFS data and the observed wind direction and speed of 10 meters. Statistical indicators and Taylor charts were also utilized.
The results show that, the highest number of dust days in Khuzestan province occurred in Bostan and Abadan in 2022. In the three months of May, March and July the highest number of dust days in the province was obtained. The wind filed of 700 hPa simulated by all four WRF-Chem model configurations is similar to the initial GFS data, which indicates good model performance in simulation of wind field in the selected area, although there are differences in some details and in smaller scales. The maximum and mean of estimated wind speed by configuration with the YSU boundary layer scheme is lower than that for MYJ and is closer to observational data. During the analysis of the two bias error indices (MB) and normalized mean growth error (NMGE), the lowest values were observed at the Abadan, Mahshahr, and Omidieh stations, indicating excellent performance of the WRF-Chem model in these areas. However, weaker results were obtained at the Bostan and Ahvaz stations.
Taylor diagram shows good model performance in estimation of 10-meters wind in Abadan, Mahshahr, Bostan, Ahvaz and Omidieh stations. The P1M6D1 and P1M2D1 have better results than P2M2D1 and P2M6D1. In this way, the Taylor diagram shows the impact of the use of YSU boundary layer in estimating 10-meters wind is better than that of MYJ.
Dust distribution obtained from WRF-Chem model and the dust mass observed in the image of the MODIS sensor are in good harmony so that the dust emission centers in eastern Syria and northwest of Iraq, eastern Iraq and northern Saudi Arabia is well simulated by the model. In the horizontal distribution of dust prediction, the boundary layer scheme has more effect than that of the microphysical scheme.
 

Keywords

Main Subjects


اصغری، م.؛ مشکوتی، ا.ح.؛ رنجبر، ع. و مرادی، م. (1399). مطالعه و ارزیابی طرحواره‌های گسیل گرد و خاک در مدل WRF-Chem توفان شرق و جنوب‌شرق کشور (مطالعه موردی 11 تا 13 آگوست 2018، پژوهش‌های اقلیم شناسی، 43، 87-98.
بهمن‌زاده، ف.؛ قادر، س.؛ حق‌شناس، س. ع. و یازجی، د. (1398). بررسی موردی عملکرد مدل WRF جهت پیش‌یابی میدان باد تراز 10 متر و دمای تراز دومتر با استفاده از داده‌های ماهواره‌ای و ایستگاه‌های همدیدی در منطقه دریای عمان و دریای عرب. مجله فیزیک زمین و فضا، 45(2)، 441-458.
رضازاده، م.؛ ایران‌‌نژاد، پ. و شائو، ی. (1392). شبیه‌سازی گسیل غبار با مدل پیش‌بینی عددی وضع هوا WRF-Chem و با استفاده از داده‌های جدید سطح در منطقه خاورمیانه. مجله فیزیک زمین و فضا، 39(1)، 191-212.
زرین، آ.؛ صالح‌آبادی، ن.؛ مفیدی، ع. و داداشی رودباری، ع. (1401). بررسی فصلی گردوغبار‌ در شمال شرق ایران و شبیه‌‌سازی عددی رخدادهای گردوغبار‌ فرین با مدل WRF-Chem، مجله فیزیک زمین و فضا، 48(2)، 421-440.
Alizadeh Choobari, O., Zawar‐Reza, P., & Sturman, A. (2012). Atmospheric forcing of the three‐dimensional distribution of dust particles over australia: A case study. Journal of Geophysical Research: Atmospheres, 117(D11).
Alizadeh-Choobari, O., Zawar-Reza, P., & Sturman, A. (2014). The “wind of 120 days” and dust storm activity over the sistan basin. Atmospheric research, 143, 328-341.
Bahmanzade, F., Ghader, S., Haghshenas, S. A., & Yazgi, D. (2019). A case study of WRF model performance to hindcast of 10-m wind and 2-m temperature against the satellite and synoptic stations data over the gulf of oman and the arabian sea. Journal of the Earth and Space Physics, 45(2), 441-458. (In Perisan). https://doi.org/10.22059/jesphys.2019.267709.1007051
Bilal, M., Solbakken, K., & Birkelund, Y. (2016). Wind speed and direction predictions by WRF and windsim coupling over nygårdsfjell. Journal of Physics: Conference Series, 753(8), 082018. https://doi.org/10.1088/1742-6596/753/8/082018.
Chawla, I., Osuri, K. K., Mujumdar, P. P., & Niyogi, D. (2018). Assessment of the weather research and forecasting (WRF) model for simulation of extreme rainfall events in the upper ganga basin. Hydrology and Earth System Sciences, 22(2), 1095-1117.
Chen, F., Janjić, Z., & Mitchell, K. (1997). Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer Meteorology, 85(3), 391-421.
Dayal, K. K., Cater, J. E., Kingan, M. J., Bellon, G. D., & Sharma, R. N. (2020). Evaluation of the WRF model for simulating surface winds and the diurnal cycle of wind speed for the small island state of fiji. Journal of Physics: Conference Series, 1618(6), 062025. https://doi.org/10.1088/1742-6596/1618/6/062025.
Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569-585.
Chou, M.-D., & Suarez, M. J. (1994). An efficient thermal infrared radiation parameterization for use in general circulation models. Technical Memorandum, 102 P(104606).
Eltahan, M., & Magooda, M. (2018). Sensitivity of WRF microphysics schemes: Case study of simulating a severe rainfall over egypt. Journal of Physics: Conference Series.
Flaounas, E., Kotroni, V., Lagouvardos, K., Klose, M., Flamant, C., & Giannaros, T. M. (2017). Sensitivity of the WRF-Chem (v3. 6.1) model to different dust emission parametrisation: Assessment in the broader mediterranean region. Geoscientific Model Development, 10(8), 2925-2945.
Gbode, I. E., Dudhia, J., Ogunjobi, K. O., & Ajayi, V. O. (2019). Sensitivity of different physics schemes in the WRF model during a west african monsoon regime. Theoretical and Applied Climatology, 136, 733-751.
Gilmore, M. S., Straka, J. M., & Rasmussen, E. N. (2004). Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Monthly Weather Review, 132(8), 1897-1916.
Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-31-38-34.
Herman, J., Bhartia, P., Torres, O., Hsu, C., Seftor, C., & Celarier, E. (1997). Global distribution of uv‐absorbing aerosols from nimbus 7/toms data. Journal of Geophysical Research: Atmospheres, 102(D14), 16911-16922.
Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318-2341.
Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151.
Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927-945.
Jankov, I., Grasso, L. D., Sengupta, M., Neiman, P. J., Zupanski, D., Zupanski, M., Lindsey, D., Hillger, D. W., Birkenheuer, D. L., & Brummer, R. (2011). An evaluation of five arw-WRF microphysics schemes using synthetic goes imagery for an atmospheric river event affecting the california coast. Journal of Hydrometeorology, 12(4), 618-633.
Karimkhani, M., Azadi, M., Meshkatee, A. H., & Saadatabadi, A. R. (2021). Evaluation of WRF microphysics schemes in the simulation of a squall line over iran using radar and reanalysis data. Nexo Revista Científica, 34(02), 682-697.
Kumar, R., Barth, M., Pfister, G., Naja, M., & Brasseur, G. (2014). WRF-Chem simulations of a typical pre-monsoon dust storm in northern india: Influences on aerosol optical properties and radiation budget. Atmospheric Chemistry and Physics, 14(5), 2431-2446.
LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E., & Cetola, J. D. (2019). The afwa dust emission scheme for the gocart aerosol model in WRF-Chem v3. 8.1. Geoscientific Model Development, 12(1), 131-166.
Lin, Y.-L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology and climatology, 22(6), 1065-1092.
Lu, H., & Shao, Y. (2001). Toward quantitative prediction of dust storms: An integrated wind erosion modelling system and its applications. Environmental Modelling & Software, 16(3), 233-249.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682.
Mobarak Hassan, E., Ghafarian, P., Bahrami, F., Karimkhani, M., & Sabori, M. (2019). Sensitivity of mesoscale dust simulation to WRF-Chem boundary layer scheme (case study: March 14th 2012). Journal of Air Pollution and Health, 4(3). https://doi.org/10.18502/japh.v4i3.1547
Prakash, P. J., Stenchikov, G. L., Kalenderski, S., Osipov, S., & Bangalath, H. K. (2015). The impact of dust storms on the arabian peninsula and the red sea. Atmospheric Chemistry and Physics, 15(1), 199-222.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product. Reviews of Geophysics, 40(1), 2-1-2-31. https://doi.org/10.1029/2000rg000095
Rajeevan, M., Kesarkar, A., Thampi, S., Rao, T., Radhakrishna, B., & Rajasekhar, M. (2010). Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over southeast india. Annales Geophysicae.
Song, H.-J., & Sohn, B.-J. (2018). An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 54, 225-236.
Yin, D., Nickovic, S., Barbaris, B., Chandy, B., & Sprigg, W. A. (2005). Modeling wind-blown desert dust in the southwestern united states for public health warning: A case study. Atmospheric Environment, 39(33), 6243-6254. https://doi.org/https://doi.org/10.1016/j.atmosenv.2005.07.009
Yin, D., Nickovic, S., & Sprigg, W. A. (2007). The impact of using different land cover data on wind-blown desert dust modeling results in the southwestern united states. Atmospheric Environment, 41(10), 2214-2224. https://doi.org/https://doi.org/10.1016/j.atmosenv.2006.10.061