Multi-annual prediction of precipitation and temperature over Iran and neighboring countries during 2022-2026 using DCPP models

Document Type : Research Article

Authors

Atmospheric Science and Meteorological Research Center, Climate Research Institute, Mashhad, Iran.

Abstract

The maximum range of long-term operational predictions was limited to one year until 2018, while with the implementation of the Decadal Climate Prediction Project (DCPP), their range was increased to a decade. These predictions are made by initializing global climate models using observational data. The current study aims to predict the precipitation and air temperature of Iran and neighboring countries for the next 5 years (2022 to 2026) in three time scales of seasonal, annual and five-year, using the output of DCPP models initialized in November 2021. For this purpose, the precipitation and temperature coarse data of the MPI-ESM1.2-LR (Max Plank Institute in Germany), MIROC6 (Japan Agency for Marine-Earth Science and Technology) and CNRM-ESM2-1 (Centre National de Recherches Meteorologiques, France) models were used. The horizontal resolution of the MPI-ESM1.2-LR, MIROC6 and CNRM-ESM2-1 models are 200×200, 250×250 and 250×250 km, respectively. The correction of the output of the climate models was done based on the standard methodology proposed by the WCRP (World Climate Research Program) working group of World Meteorological Organization (WMO). To correct the raw output of precipitation and temperature of the DCPP models, the GPCC and ERA5 datasets were used for precipitation and temperature, respectively.
The results showed that Iran's precipitation is unlikely to be more than normal in any of the next five years. The highest decrease in precipitation will likely occur in 2022 and 2025, and the precipitation of the 2023 will most likely be normal. The high predictability of ENSO and the expectation of El Niño occurrence in 2023 confirm that the precipitation of Iran and neighboring countries is within the normal range for 2023. It is more likely that, in none of the next 5 years, the average temperature of the Iran will be below normal, and the temperature anomaly is at least in the range of 0.3-0.5 degree Celsius, and the largest increase is expected in the western half of Iran and the northeast region under study. The minimum and maximum temperature increase will most likely occur in 2022 and 2026 over Iran. In the studied period, the precipitation of West Asia, especially the areas adjacent to the Arabian Sea and the Red Sea, is most likely more than normal and other countries are estimated to be within the normal range. Also, the average air temperature of the next five years in West Asia will be between 0.3 and 1.2 degree of Celsius above normal, with the largest increase of 1 to 1.2 degrees occurring in eastern Turkmenistan, Tajikistan and Kyrgyzstan. It is expected that the air temperature anomaly in the Arabian Peninsula will be in the range of 0.3 to 0.5 degrees, which will be about 0.5 degrees lower than other countries in the region.

Keywords

Main Subjects


بابائیان، ا.؛ جوانشیری، ز.؛ مدیریان، ر.؛ خزانه‌داری، ل.؛ فلامرزی، ی.؛ ملبوسی، ش.؛ کریمیان، م.؛ پاکدامن، م. و کوهی، م. (1401). پیش‌بینی اقلیم کشور در بازه 1 الی 5 سال آینده. پروژه خاتمه یافته، کارفرما: سازمان پدافند غیرعامل کشور، مجری: پژوهشگاه هواشناسی و علوم جو- پژوهشکده اقلیم‌شناسی مشهد، 125 صفحه.
بابائیان، ا.؛ مدیریان، ر.؛ کریمیان، م. و جوانشیری، ز. (1400). پیش‌بینی چندسالانه بارش ایران با مقیاس‌کاهی برونداد مدل‌های DCPP، مطالعه موردی: دوره 2023-2019. نشریه پژوهش‌های تغییرات آب وهوایی، 2(6)، 63-78.
بابائیان، ا.؛ مدیریان، ر.؛ کریمیان، م. و جوانشیری، ز. (1399). یافته‌های پروژه جدید پیش بینی چند سالانه سازمان جهانی هواشناسی DCPP برای پیش بینی بارش ایران در دوره 2020-2024. هشتمین کنفرانس ملی مدیریت منابع آب ایران، 27 بهمن 1399، دانشگاه فردوسی مشهد.
بابائیان، ا.؛ مدیریان، ر.؛ کریمیان، م. و جوانشیری، ز. (1398). پیش‌بینی احتمالاتی ماهانه بارش و دمای کشور برای دوره 2024-2020 بر اساس پروژه DCPP سازمان جهانی هواشناسی، پروژه خاتمه یافته پژوهشکده اقلیم‌شناسی مشهد، 92 صفحه.
زرین، آ.؛ داداشی رودباری، ع. ع. و حسنی، س. (1401) پیش‌بینی دمای ماهانه ایران با استفاده از پروژه پیش‌بینی اقلیمی دهه‌ای (DCPP) در دهه آینده (2028-2021). مجله فیزیک فضا و زمین، 48(1)، 189-211.
مسعودیان، س. ا.؛ کیخسروی کیانی، م. ص. و رعیت‌پیشه، ف. (1393). معرفی و مقایسه‌ی پایگاه داده‌ی اسفزاری با پایگاه‌های داده‌یGPCC ، GPCP وCMAP . تحقیقات جغرافیایی، 29(112)، 88-73.
محمدی قلعه‌نی، م. و شرفی، س. (1401). ارزیابی دقت پایگاه‌ داده‌های CRU TS4.05 و ERA5 برای متغیرهای بارش، دما و تبخیرتعرق پتانسیل در اقلیم‌های مختلف ایران. نشریه آبیاری و زهکشی ایران،16(5)، 879-890.
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., & Eade, R. (2016). The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 3751-3777.
CLIVAR (International CLIVAR Project Office). (2011). Decadal and bias correction for decadal climate predictions. January. International CLIVAR Project Office, CLIVAR Publication Series No., 150.
Dewitte, S., Cornelis, J. P., Müller, R., & Munteanu, A. (2021). Artificial intelligence revolutionizes weather forecast, climate monitoring and decadal prediction. Remote Sensing, 13(16), 3209.
Doblas-Reyes, F. J., Andreu-Burillo, I., Chikamoto, Y., García-Serrano, J., Guemas, V., Kimoto, M., Mochizuki, T., Rodrigues, L. R. L., & Van Oldenborgh, G. J. (2013). Initialized near-term regional climate change prediction. Nature Communication, 16(4), 1715.
ESGF. (2022). DCPP. https://esgf-node.llnl.gov/search/cmip6/
Hawkins, E., Tietsche, S., Day, J., Melia, N., Haines, K., & Keeley, S. (2016). Aspects of designing and evaluating seasonal-to-interannual Arctic sea-ice prediction systems. Q. J. Roy. Meteorol. Soc., 142, 672–683.
Hermanson, L., Smith, D., Seabrook, M., Bilbao, R., Doblas-Reyes, F., Tourigny, E., Lapin, V., Kharin, V. V., Merryfield, W. J., Sospedra-Alfonso, R., Athanasiadis, P., Nicoli, D., Gualdi, S., Dunstone, N., Eade, R., Scaife, A., Collier, M., O’Kane, T., Kitsios, V., Sandery, P., Pankatz, K., Früh, B., Pohlmann, H., Müller, W., Kataoka, T., Tatebe, H., Ishii, M., Imada, Y., Kruschke, T., Koenigk, T., Karami, M. P., Yang, S., Tian, T., Zhang, L., Delworth, T., Yang, X., Zeng, F., Wang, Y., Counillon, F., Keenlyside, N., Bethke, I., Lean, J., Luterbacher, J., Kolli, R. K., & Kumar, A. (2022). WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25. Bulletin of the American Meteorological Society, 103(4), E1117-E1129. doi: 10.1175/BAMS-D-20-0311.1.
Knight J. R., Andrews M. B., Smith D. M., Arribas A., Colman A. W., Dunstone N. J., Hermanson L., Maclnchlan C., Peterson K. A., Scaife A. A., & Williams A. (2014). Predictions of Climate Several Years Ahead Using an Improved Decadal Prediction System. Journal of Climate, 27(20), 7550-7567.
Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes, F., Hawkins, E. , Kimoto, M., Kolli, R. K., Kumar, A., Matei, D., Matthes, K., Müller, W. A., O'Kane, T., Perlwitz, J., Power, S., Raphael, M., Shimpo, A., Smith, D., Tuma, M., & Wu, B. (2019) Towards operational predictions of the near-term climate. Nature Climate Change, 9. pp. 94-101. ISSN 1758-6798
Leung L. Y.A., & North, G. R. (1990). Information theory and climate prediction. Journal of Climate, 3, 1-14.
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton, R., Teng, H., van Oldenborgh, G. J., Vecchi, G., & Yeager, S. (2014). Decadal Climate Prediction: An Update from the Trenches. Bulletin of the American Meteorological Society, 95(2), 243-267. doi: 10.1175/BAMS-D-12-00241.1.
 
 
 
Rubinetti, S., Taricco, C., Alessio, S., Rubino, A., Bizzarri, I., & Zanchettin, D. (2020). Robust decadal hydroclimate predictions for northern Italy based on a twofold statistical approach. Journal of Atmosphere, 11(6), 671.
Shukla, J. (1981). Dynamical predictability of monthly means. Journal of the Atmospheric Sciences, 38(12), 2547-2572.
Smith, D. M., Eade, R., & Pohlmann, H. (2013). A comparison of full field and anomaly initialization for seasonal to decadal climate prediction. Journal of Climate Dynamics, 41, 3325–3338.
Smith, D. M., Eade, R., Scaife, A. A., Caron, L. -P., Danabasoglu. G., DelSole5, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., & Yang, X. (2019). Robust skill of decadal climate predictions. Npj Climate and Atmospheric Science, 2(1), 1-10.
Taylor, K.E., Stouffer, R.J. & Meehl, G.A. (2012). An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 93, 485–498
WCRP. (2022). WMO-WCRP portal: https://www.wcrp-climate.org/dcp-overview; available in: 24/1/2020.