Disparity of ground-based Total Solar eclipse polar plumes and AIA/SDO space mission EUV ray-like jets

Document Type : Research Article

Authors

Department of Physics, Payame Noor University (PNU), Tehran, Iran.

Abstract

Multi-wavelength observations could help discriminate the fundamental differences for the mechanism of the jet-like structures of the hot and cool material in the inner atmosphere. We use the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) for unprecedented temporal and spatial resolving power for a wide range of wavelengths to increase our knowledge about the origin and the evolution of jets. The dynamical behavior of the jets in polar plumes (PP’s) is considered for the first time based on the simultaneously observed in space EUV hot, and cool emission lines also observed in W-L at total eclipses.
At the USA 2017 total solar eclipse, we observed white-light polar plumes (W-L PPs) with an excellent resolution from different sites. We tried several combinations of pictures taken (a) from different sites on the ground, using different image processing (techniques), and (b) from space, taken with different coronal filters and time sequences. The resolution of the faint polar regions space images are of low signal/noise (S/N) ratio, and instead of summing pixels of images to reduce the noise of individual images, we found it more efficient to sum a burst of 5 to 10 min consecutive AIA frames from a sequence taken around the total eclipse time. This should smear out the fast dynamical events showing fast dynamical events, but the jet part is not significantly smeared, as the flow being linear. We also found promising results using the 171 Å filter with temperature sensitivity extended from 0.6 MK to 2 MK due to lines of Fe IX, Fe X and Ni XIV but also performed the analysis with the higher temperature sensitivity filters, at 193 and 211 Å. The relationships of W-L PP’s with inner parts off-limb EUV emission lines jet-like structures demonstrated a highly correlated behavior. In most cases, we found a cross-correlation coefficient in order of 85% in coronal hole regions; however, this correlation is not perfect in some cases. Therefore, in these features, the direct connection was not detectable obviously, the disparity could be related to Doppler dimming effect in high velocity jet like plums. However, most W-L plumes have counterparts with EUV ray.

Keywords

Main Subjects


Auchère, F., Andretta, V., Antonucci, E., Bach, N., Battaglia, M., Bemporad, A., Buchlin, E., Caminade, S., Carlsson, M., Carlyle, J., Cerullo, J. J., Chamberlin, P. C., Colaninno, R. C., Davila, J. M., De Groof, A., Etesi, L., Fahmy, S., Fineschi, S., Fludra, A., Gilbert, H. R., Giunta, A., & Zouganelis, I. (2020). Coordination within the remote sensing payload on the Solar Orbiter mission. Astronomy & Astrophysics, 642, A6. DOI: 10.1051/0004-6361/201937032.
Banerjee, D., Pérez-Suárez, D., & Doyle, J. G. (2009a). Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astronomy & Astrophysics, 501(3), L15-L18.‏
Banerjee, D., Teriaca, L., Gupta, G. R., Imada, S., Stenborg, G., & Solanki, S. K. (2009b). Propagating waves in polar coronal holes as seen by SUMER & EIS. Astronomy & Astrophysics, 499(3), L29-L32.‏ DOI: 10.1111/j.1365-2966.2009.15279.x.
Banaszkiewicz, M., Axford, W. I., & McKenzie, J. F. (1998). An analytic solar magnetic field model. Astronomy and Astrophysics, v. 337, p. 940-944 (1998), 337, 940-944.
DeForest, C. E., Lamy, P. L., & Llebaria, A. (2001). Solar polar plume lifetime and coronal hole expansion: Determination from long-term observations. The Astrophysical Journal, 560(1), 490.‏
Del Zanna, G., Bromage, B. J. I., & Mason, H. E. (2003). Spectroscopic characteristics of polar plumes. Astronomy & Astrophysics, 398(2), 743-761.‏ DOI: 10.1111/j.1365-2966.2009.15279.x.
Gabriel, A. H., Abbo, L., Bely-Dubau, F., Llebaria, A., & Antonucci, E. (2005). Solar Wind Outflow in Polar Plumes from 1.05 to 2.4 R☉. The Astrophysical Journal, 635(2), L185.‏
Gupta, G. R., Banerjee, D., Teriaca, L., Imada, S., & Solanki, S. (2010). Accelerating waves in polar coronal holes as seen by EIS and SUMER. The Astrophysical Journal, 718(1), 11.‏
Cho, I. H., Moon, Y. J., Cho, K. S., Nakariakov, V. M., Lee, J. Y., & Kim, Y. H. (2019). A New Type of Jet in a Polar Limb of the Solar Coronal Hole. The Astrophysical Journal Letters, 884(2), L38.‏ DOI: 10.3847/2041-8213/ab4799.
Habbal, S. R., Druckmüller, M., Morgan, H., Scholl, I., Rušin, V., Daw, A., Johnson, J., & Arndt, M. (2010). Total solar eclipse observations of hot prominence shrouds. The Astrophysical Journal, 719(2), 1362.‏ DOI:10.1088/0004-637X/719/2/1362.
Jiao, F., Xia, L., Li, B., Huang, Z., Li, X., Chandrashekhar, K., & Fu, H. (2015). Sources of quasi-periodic propagating disturbances above a solar polar coronal hole. The Astrophysical Journal Letters, 809(1), L17.
‏Koutchmy, S., & Stellmacher, G. (1976). Photometric study of chromospheric and coronal spikes observed during the total solar eclipse of 30 June, 1973. Solar Physics, 49, 253-265.‏
Koutchmy, S., & Bocchialini, K. (1997). Eclipse WL polar plumes: what is the connection with the disk activity?. In AIP Conference Proceedings, 385(1), 137-144). American Institute of Physics.‏
Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N. (2012). The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, 275, 17-40.‏ DOI:10.1007/s11207-011- 9776-8.
Noci, G., Kohl, J. L., & Withbroe, G. L. (1987). Solar wind diagnostics from Doppler-enhanced scattering. The Astrophysical Journal, 315, 706-715.‏ DOI: 10.1086/165172.
Muglach, K. (2021). The Photospheric Footpoints of Solar Coronal Hole Jets. The Astrophysical Journal, 909(2), 133.‏ DOI:10.3847/1538-4357/abd5ad.
O'dwyer, B., Del Zanna, G., Mason, H. E., Weber, M. A., & Tripathi, D. (2010). SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astronomy & Astrophysics, 521, A21.‏ DOI: 10.1051/0004-6361/201014872.
Pant, V., Dolla, L., Mazumder, R., Banerjee, D., Prasad, S. K., & Panditi, V. (2015). Dynamics of on-disk plumes as observed with the Interface Region Imaging Spectrograph, the Atmospheric Imaging Assembly, and the Helioseismic and Magnetic Imager. The Astrophysical Journal, 807(1), 71.‏ DOI:10.1088/0004-637X/807/1/71
Pasachoff, J. M., Jacobson, W. A., & Sterling, A. C. (2009). Limb Spicules from the Ground and from Space. Solar Physics, 260, 59-82.‏ DOI:10.1007/s11207-009-9430-x.
Poletto, G. (2015). Solar coronal plumes. Living Reviews in Solar Physics, 12, 1-67.‏
Pucci, S., Poletto, G., Sterling, A. C., & Romoli, M. (2014). Birth, life, and death of a solar coronal plume. The Astrophysical Journal, 793(2), 86.‏
Samanta, T., Pant, V., & Banerjee, D. (2015). Propagating disturbances in the solar corona and spicular connection. The Astrophysical Journal Letters, 815(1), L16.‏ DOI: 10.1088/2041-8205/815/1/L16
Saito, K. (1965). Polar Rays of the Solar Corona, II. Publications of the Astronomical Society of Japan, 17, 1 (1965)., 17, 1.
Sornette, B., Fort, B., Picat, J. P., & Cailloux, M. (1980). On the physical significance of white light polar plumes in the solar corona. Astronomy and Astrophysics, 90, 344-349.
Sterling, A. C., Moore, R. L., Falconer, D. A., & Adams, M. (2015). Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature, 523(7561), 437-440.‏ DOI:10.1038/nature14556.
Raouafi, N. E., Harvey, J. W., & Solanki, S. K. (2007). Properties of solar polar coronal plumes constrained by ultraviolet coronagraph spectrometer data. The Astrophysical Journal, 658(1), 643.‏
Tavabi, E., Koutchmy, S., & Golub, L. (2015). Limb event brightenings and fast ejection using IRIS mission observations. Solar Physics, 290, 2871-2887.‏ DOI:10.1007/s11207-015-0771-3.
Tavabi, E., Koutchmy, S., & Golub, L. (2018). Polar coronal plumes as tornado-like jets. The Astrophysical Journal, 866(1), 35.‏ DOI:10.3847/1538-4357/aadc64.
Teriaca, L., Poletto, G., Romoli, M. and Biesecker, D.A., (2003). The nascent solar wind: Origin and acceleration. Astrophys. J., 588, 566–577.
Title, A. M., Hoeksema, J. T. Schrijver, C. J., (2006). 36th COSPAR Scientific Assembly, CD ROM 2600, 260, 59-82.‏
Van de Hulst, H. C. (1950). On the polar rays of the corona (errata: 11 VIII). Bulletin of the Astronomical Institutes of the Netherlands, 11, 150, 11, 150.
Wang, Y. M., Sheeley Jr, N. R., Socker, D. G., Howard, R. A., Brueckner, G. E., Michels, D. J., Moses, D., St. Cyr, O. C., Llebaria, A., & Delaboudiniere, J. P. (1998). Observations of correlated white-light and extreme-ultraviolet jets from polar coronal holes. The Astrophysical Journal, 508(2), 899.
Wilhelm, K., Dwivedi, B. N., & Curdt, W. (2010). Spectroscopic diagnostics of polar coronal plumes. In Magnetic Coupling between the Interior and Atmosphere of the Sun (pp. 454-458). Berlin, Heidelberg: Springer Berlin Heidelberg.‏
Wilhelm, K., Abbo, L., Auchère, F., Barbey, N., Feng, L., Gabriel, A. H., Giordano, S., Imada, S., Llebaria, A., Matthaeus, W. H., Poletto, G., Raouafi, N. -E.,Suess, S. T., Teriaca, L., & Wang, Y. M. (2011). Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes. The Astronomy and Astrophysics Review, 19, 1-70.‏ DOI: ADS. [2011A&ARv..19...35W].
Ko, Y. K., Stenborg, G., Linker, J., Weberg, M. J., Lionello, R., & Titov, V. (2022). Fine Structures of the Inner Solar Corona and the Associated Magnetic Topology. The Astrophysical Journal, 933(1), 95.‏ DOI: 10.3847/1538-4357/ac722c.