Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801. https://doi.org/10.1029/92JD01517
Black, H. D., & Eisner, A. (1984). Correcting satellite Doppler data for tropospheric effects. Journal of Geophysical Research: Atmospheres. Wiley Online Library, 89(D2), 2616–2626.
Boehm, J., Heinkelmann, R. & Schuh, H. (2007). Short Note: A global model of pressure and temperature for geodetic applications. J. Geod, 81, 679–683. https://doi.org/10.1007/s00190-007-0135-3
Böhm, J., Möller, G., Schindelegger, M., Pain, G., & Weber, R. (2015). Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut, 19, 433–441. https://doi.org/10.1007/s10291-014-0403-7
Chen, J., Wang, J., Wang, A., Ding, J., & Zhang, Y. (2020). SHAtropE—A regional gridded ZTD model for China and the surrounding areas. Remote Sensing, 12(1), 165. https://doi.org/10.3390/rs12010165
Collins, J. P., & Langley, R. B. (1998). The residual tropospheric propagation delay: How bad can it get?, Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998), Nashville, TN, September 1998, 729-738.
Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio science, 20(6), 1593 1607.
Ding, M., Hu, W., Jin, X., & Yu, L. (2016). A new ZTD model based on permanent ground-based GNSS-ZTD data. Survey review, 48(351), 385-391. https://doi.org/10.1179/1752270615Y.0000000034
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Hove, T., Ware, R., McClusky, S., Herring, T., & King, R. W. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of Applied Meteorology and Climatology, 35, 830–838. https:// doi. org/ 10. 1175/ 1520- 0450(1996) 0352.0. CO;2.
Hopfield, H. S. (1969). Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical research. Wiley Online Library, 74(18), 4487–4499. doi: 10.1029/JC074i018p04487
Katsougiannopoulos, S., Pikridas, C., Rossikopoulos, D., Ifadis, I., & Fotiou, A. (2006). Tropospheric refraction estimation using various models, radiosonde measurements and permanent GPS data. PS5. 4–GNSS Processing and Applications, 15.
Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J. Geod, 92, 349–360. https://doi.org/10.1007/s00190-017-1066-2
Leandro, R.F., Langley, R.B. & Santos, M.C. (2008). UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solut, 12, 65–70. https://doi.org/10.1007/s10291-007-0077-5
Li, W., Yuan, Y., Ou, J., Li, H., & Li, Z. (2012). A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull., 57, 2132–2139. https://doi.org/10.1007/s11434-012-5010-9
Li, X., Dick, G., Ge, M., Heise, S., Wickert, J., & Bender, M. (2014). Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophysical Research Letter, 41(10), 3615–3621. https:// doi. org/ 10. 1002/ 2013G L0587 21.
Mao, J., Wang, Q., Liang, Y., & Cui, T. (2021). A new simplified zenith tropospheric delay model for real-time GNSS applications. GPS Solut, 25, 43 (2021). https://doi.org/10.1007/s10291-021-01092-4
Mateus, P., Catalão, J., Mendes, V. B., & Nico, G. (2020). An ERA5-based hourly global pressure and temperature (HGPT) model. Remote Sensing, 12(7), 1098. https://doi.org/10.3390/rs12071098
Mateus, P., Mendes, V. B., & Plecha, S. M. (2021). HGPT2: An ERA5-Based Global Model to Estimate Relative Humidity. Remote Sensing, 13(11), 2179. https://doi.org/10.3390/rs13112179
Niell, A. E., Coster, A. J., Solheim, F. S., Mendes, V. B., Toor, P. C., Langley, R. B., & Upham, C. A. (2001). Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. Journal of Atmospheric and Oceanic Technology, 18(6), 830-850. https://doi.org/10.1175/1520-0426(2001)018%3C0830:COMOAW%3E2.0.CO;2
Penna, N., Dodson, A., & Chen, W. (2001). Assessment of EGNOS Tropospheric Correction Model. Journal of Navigation, 54(1), 37-55. doi:10.1017/S0373463300001107
Pikridas, C., Katsougiannopoulos, S. & Zinas, N. (2014). A comparative study of zenith tropospheric delay and precipitable water vapor estimates using scientific GPS processing software and web based automated PPP service. Acta Geod Geophys, 49, 177–188. https://doi.org/10.1007/s40328-014-0047-7
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247-251. https://doi.org/10.1029/GM015p0247
Showman, A. P., & Dowling, T. E. (2014). Earth as a planet: Atmosphere and Oceans. In Encyclopedia of the solar system (pp. 423-444). Elsevier. https://doi.org/10.1016/B978-0-12-415845-0.00020-7
Soja, B., Nilsson, T., Karbon, M., Zus, F., Dick, G., Deng, Z., Wickert, J., Heinkelmann, R., & Schuh, H. (2015). Tropospheric delay determination by Kalman filtering VLBI data. Earth Planet Sp, 67, 144 (2015). https://doi.org/10.1186/s40623-015-0293-0
Sun, L., Chen, P., Wei, E., & Li, Q. (2017). Global model of zenith tropospheric delay proposed based on EOF analysis. Advances in Space Research, 60(1), 187-198. https://doi.org/10.1016/j.asr.2017.03.045.
Sun, Z., Zhang, B., & Yao, Y. (2019). A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017. Remote Sensing, 11(16), 1893. https://doi.org/10.3390/rs11161893.
Teke, K., Nilsson, T., Böhm, J., Hobiger, T., Steigenberger, P., García-Espada, S., Haas, R., & Willis, P. (2013). Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J. Geod, 87, 981–1001. https://doi.org/10.1007/s00190-013-0662-z
Teten O. (1930). Über einige meteorologische Begriffe. Z. Geophys., 6. 297-309.
Yang, L., Gao, J., Zhu, D., Zheng, N., & Li, Z. (2020). Improved zenith tropospheric delay modeling using the piecewise model of atmospheric refractivity. Remote Sensing, 12(23), 3876. https://doi.org/10.3390/rs12233876
Yao, Y. B., HE, C. Y., Zhang, B., & XU, C. Q. (2013). A new global zenith tropospheric delay model GZTD. Chinese Journal of Geophysics, 56(7), 2218-2227.
Yao, Y., Hu, Y., Yu, C., Zhang, B., & Guo, J. (2016). An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. Nonlinear processes in geophysics, 23(3), 127-136.
Yao, Y., Xu, X., Xu, C., Peng, W., & Wan, Y. (2019). Establishment of a real-time local tropospheric fusion model. Remote Sensing, 11(11), 1321. https://doi.org/10.3390/rs11111321
Zheng, F., Lou, Y., Gu, S., Gong, X., & Shi, C. (2018). Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. Journal of Geodesy, 92, 545–560. https:// doi. org/ 10. 1007/ s00190- 017- 1080-4.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.