برآورد رفتار استاتیکی و دینامیکی سازه‌های مهندسی با تحلیل سری زمانی مشاهدات GPS، مطالعه موردی: پل کابلی قدس اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه نقشه برداری، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران.

چکیده

رفتار سازه‌های مهندسی متأثر از بارهای استاتیکی و دینامیکی بسته به نوع طراحی، نوع مصالح به‌کار رفته در آنها و زمان بهره‌برداری متفاوت است. این رفتارها را می‌توان با سری‌های زمانی حاصل از مشاهدات GPS در حوزه زمانی و فرکانسی مشاهده و ارزیابی کرد. تحقیق حاضر با هدف بررسی رفتار پل کابلی قدس اردبیل با پایش ژئودتیکی توسط GPS انجام شد. شبکه میکروژئودزی برای گردآوری داده و نرم‌افزار RTKLIB برای تشکیل سری‌های زمانی مورد استفاده قرار گرفته است. برای ارزیابی حرکت پل از پالایه‌های میانگین متحرک، میانگین زمانی و میانه به‌ترتیب برای برآورد مؤلفه­های نیمه استاتیک، استاتیک و دینامیک حرکت استفاده شد. با اﻋﻤﺎل ﭘﺎﻻﻳﻪ میانگین متحرک ﻣﺆلفه ﻧﻴﻤﻪ‌اﺳﺘﺎﺗﻴﻚ ﺑﺎ دقت 4، 1 و 2 میلی‌متر به‌ترتیب در راﺳﺘﺎهای شرق، شمال و قائم اﺳﺘﺨﺮاج ﺷﺪه اﺳﺖ. ﺑﻴﻦ ﻣﺆلفه دﻳﻨﺎﻣﻴﻚ و ﻣﺆلفه ﭘﺮﻳﻮدﻛﻮﺗﺎه RMSE ﺑﺮاﺑﺮ ﺑﺎ 8/0، 1/0 و4 میلی‌متر به‌ﺗﺮﺗﻴﺐ در ﺳﻪ ﺟﻬﺖ شرق، شمال و قائم به‌دست آﻣﺪه است. ﻓﺮﻛﺎنس‌های ﻏﺎﻟﺐ ﺣﺮﻛﺖ ﭘﻞ، ﺑﺎ اﺳﺘﻔﺎده از نمودار پریودوگرام حاصل از تبدیل فوریه سریع ﺑﺮآورد ﺷﺪﻧﺪ. در ﻧﻬﺎﻳﺖ ﻣﺪل ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﺑﺎ ﺗﻌﺪاد 10 ﻻﻳﻪ ﭘﻨﻬﺎن و 10 ﺗﺄﺧﻴﺮ، ﺟﻬﺖ ﭘﻴﺶﺑﻴﻨﻲ ﺗﻐﻴﻴﺮﺷﻜﻞ ﭘﻞ، ﺑﺮاﺳﺎس دادهﻫﺎی اﺳﺘﺨﺮاج ﺷﺪه و ارزﻳﺎﺑﻲ ﻣﺆﻟﻔﻪﻫﺎی ﻣﺘﻐﻴﺮ ﺑﺎ زﻣﺎن اراﺋﻪ ﺷﺪه اﺳﺖ. ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ از پردازش مشاهدات GPS در ﺣﻮزهﻫﺎی زﻣﺎن و ﻓﺮﻛﺎﻧﺲ کمترین تغییرات را در مقایسه با محدوده طراحی ایمنی رفتار پل قدس نشان می‌دهند. به‌منظور ارزیابی محتوای فرکانسی غیر از تبدیل فوریه سریع، استفاده از تبدیل فوریه زمان کوتاه و تبدیل موجک نیز پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of static and dynamic behavior of engineering structures with time series analysis of GPS observations, Case Study: Quds cable bridge of Ardabil

نویسندگان [English]

  • Rahim Namizadeh
  • Asghar Rastbood
Department of Surveying, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.
چکیده [English]

The behavior of engineering structures affected by dynamic and static loads are different depending on the type of design, the type of materials used in them and the operating time of the structures. These behaviors can be observed and evaluated with the time series obtained from GPS observations in the time and the frequency domains. The current study is conducted with the aim of investigating the behavior of Quds cable bridge of Ardabil, using the geodetic monitoring of the GPS system at a rate of 30 seconds. Microgeodesy network is used for static data collection and RTKLIB software with Kalman filter capability used for initial processing and time series formation. The processed results have an error of 3 mm. In order to evaluate the movement of the bridge, moving average, time average, and median filters have been used to estimate the semi-static, static, and dynamic components of the bridge movement, respectively. The results of applying the moving average filter indicate that the semi-static component is extracted with 4 mm accuracy in the East, 1 mm in the North and 2 mm in the Height directions. The RMSE between the obtained dynamic components and the short period components are 0.8, 0.1 and 4 mm in three directions E, N and H respectively. In order to extract the dominant frequencies of the bridge, the Fast Fourier Transform (FFT) method was used. Then, based on FFT, the periodogram diagram was obtained and the dominant frequencies were identified. In practice, numerical methods such as the periodogram diagram and its visual inspection were used to extract the existing dominant frequencies. A periodogram diagram presents the relation between the power spectrum and the frequency. In the next step, this diagram is used to compare the power spectrum of each frequency with its neighboring frequencies. Finally, the frequencies with a higher power spectrum were considered as the dominant frequencies. Finally, the Artificial Neural Network model (ANN) with 10 hidden layers and 10 delays was used to predict bridge deformation and the accurate evaluation of the components. The results obtained from the processing of GPS observations in the time and frequency domains indicated the least changes compared to the safety design range of the bridge behavior. Besides, the frequency analysis of the bridge movement time series and the Neural Network model, can be used to detect significant frequency changes and study the bridge performance rigidity, respectively.
Given that, since bridges are designed with a high reliability factor for static and dynamic loads more than the loads received during bridge monitoring, the natural frequencies of the bridge are extracted with the existing process with high accuracy, which can be the biases of early warnings. On the other hand, the bridge health monitoring system should be based on modern measurement methods. In the case of Quds Bridge, its complete behavioral investigation shows that the bridge is safe in its current condition and within the design limits.
In order to evaluate the frequency content other than the fast Fourier transform, it is also suggested to use short time Fourier transform and wavelet transforms.

کلیدواژه‌ها [English]

  • Bridge Movement Modeling
  • Structural Health Monitoring
  • GPS
  • FFT
  • Neural Network
Alpaydin, E. (2014). Introduction to machine learning. The MIT Press, USA, ISBN: 0262028182,9780262028189.
Annamdas, V. G. M., Bhalla, S., & Soh, C. K. (2017). Applications of structural health monitoring technology in Asia. Structural Health Monitoring, 16(3), 324-346, DOI: 10.1177/1475921716653278.
Barner, K. E., & Arce, G. R. (1998). 21 Order-statistic filtering and smoothing of time-series: Part II, Handbook of Statistics, Elsevier, 17, 555-602, https://doi.org/10.1016/S0169-7161(98)17023-2.
Çelebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., & Wilson, S. (1999). GPS Monitoring of Dynamic Behavior of Long-Period Structures. Earthquake Spectra, 15(1), 55-66. doi:10.1193/1.1586028.
Çelebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., & Wilson, S. (2003). GPS Monitoring of Structures: Recent Advances. In: Zschau, J., Küppers, A. (eds) Early Warning Systems for Natural Disaster Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55903-7_94.
Chen, G., Lin, X., Yue, Q., & Liu, H. (2016). Study on separation and forecast of long term deflection based on time series analysis. J. Tongji Univ. Nat. Sci. Ed., 44, 962–968.
Deng, G., & Cahill, L. W. (1993). An adaptive gaussian filter for noise reduction and edge detection, IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, 1615-1619, DOI: 10.1109/NSSMIC.1993.373563.
Esteban Vazquez, G., Ramon Gaxiola-Camacho J., Bennett, R., Michel Guzman-Acevedo, G., & Gaxiola-Camacho, I. E. (2017). Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology. Measurement, 110, 146-153, DOI; 10.1016/j.measurement.2017.06.026.
Frohlich, H., Chapelle, O., & Scholkopf, B. (2003). Feature Selection for Support Vector Machines by Means of Genetic Algorithm. Paper presented at the proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, DOI: 10.1109/TAI.2003.1250182.
Górski, P. (2015). Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using Random Decrement Method. Engineering Structures, 83, 30-49, DOI: 10.1016/j.engstruct.2014.11.006.
Harvey, A. C., & Trimbur, T. M. (2003). General model-based filters for extracting cycles and trends in economic time series. Review of Economics and Statistics, 85(2), 244-255.
Hohensinn, R., Häberling, S., & Geiger, A. (2020). Dynamic displacements from high-rate GNSS: Error modeling and vibration detection. Measurement, 157, DOI: 10.1016/j.measurement.2020.107655.
Im, S. B., Hurlebaus S., & Kang, Y. J. (2013). Summary review of GPS technology for structural health monitoring. Journal of Structural Engineering, 139(10), 1653-1664, DOI: 10.1061/(ASCE)ST.1943-541X.0000475.
 
Lai, J., Qiu, J., Feng, Z., Chen, J., & Fan, H. (2016). Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks. Computational Intelligence and Neurosciences, 2016, 1-16. https://doi.org/10.1155/2016/6708183.
Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, Transactions of the ASME–Journal of Basic Engineering, 82(D): 35-45, doi:10.1115/1.3662552.
Kaloop, M. R., & Li, H. (2009). Monitoring of bridge deformation using GPS technique. KSCE Journal of Civil Engineering, 13(6), 423431. https://doi.org/10.1007/s12205-009-0423-y.
Kaloop, M. R., Hussan, M., & Kim, D. (2019). Time-series analysis of GPS measurements for long-span bridge movements using wavelet and model prediction techniques. Advances in Space Research, 63(11), 3505-3521.
Lima, J., & Casaca, J. (2008). Smoothing GNSS time series with asymmetric simple moving averages. Lnec, Lisbon, 12-15 May, 1-8.
Larocca, A. P. C., Schaal, R. E., Santos, M. C., & Langley, R. B. (2006). Analyzing the dynamic behavior of suspension bridge towers using GPS. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29 September, Fort Worth, TX, USA.
Malleswaran, M., Vaidehi, V., & Sivasankari, N. (2014). A novel approach to the integration of GPS and INS using recurrent neural networks with evolutionary optimization techniques. Aerospace Science and Technology, 32(1), 169–179, DOI: 10.1016/j.ast.2013.09.011.
Meng, X., Xi, R. & Xie, Y. (2018). Dynamic characteristic of the forth road bridge estimated with GeoSHM, J. Glob. Position. Syst, 16(4(. )https://doi.org/10.1186/s41445-018-0014-7.
Moschas, F., & Stiros, S. (2015). Dynamic Deflections of a Stiff Footbridge Using 100-Hz GNSS and Accelerometer Data. Journal of Surveying Engineering, DOI: 10.1061/(ASCE)SU.1943-5428.0000146.
Moschas, F., & Stiros, S. (2011). Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Engineering Structures, 33, 10–17.
Moschas, F., & Stiros, S. C. (2013). Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement, 46(4), 1488–1506. DOI: 10.1016/j.measurement.2012.12.015.
Topal, G. O., & Akpinar, B. (2022). High rate GNSS kinematic PPP method performance for monitoring the engineering structures: Shake table tests under different satellite configurations. Measurement, 189, 110451.
Ting-Hua, Y., Hong-Nan, L., & Ming G. (2012). Recent research and applications of GPS-based monitoring technology for high-rise structures. Structural Control and Health Monitoring, DOI: 10.1002/stc.1501.
Wei, F., Jinguang, J., Shuangqiu, L., Yilin, G., Yifeng, T., Yanan, T., Peihui, Y., Haiyong, L., & Jingnan, L. (2020). Wei Fang, Jinguang Jiang, Shuangqiu Lu, Yilin Gong, Yifeng Tao, Yanan Tang, Peihui Yan, Haiyong Luo and Jingnan Liu. A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outages. Remote Sensing, 12(2) 256, DOI: 10.3390/rs12020256.
Xin, J., Zhou, J., Yang, S. X., Li, X., Wang, Y. (2018). Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model. Sensors, 18(1), 298. https://doi.org/10.3390/s18010298.
Yu, J., Meng, X., Shao, X., Yan, B., & Yang, L. (2014). Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing. Engineering Structures, 81, 432-443, https://doi.org/10.1016/j.engstruct.2014.10.010.
Yi, T. H., Li, H. N., & Gu, M. (2013). Recent research and applications of GPS‐based monitoring technology for high‐rise structures. Structural control and health monitoring, 20(5), 649-670. https://doi.org/10.1002/stc.1501.
Yu, J., Yan, B., Meng, X., Shao, X., & Ye, H. (2016). Measurement of Bridge Dynamic Responses Using Network-Based Real-Time Kinematic GNSS Technique. Journal of Surveying Engineering, 143(3) DOI: 10.1061/(ASCE)SU.1943-5428.0000167.
Zhou, J., Li, X., Xia, R., Yang, J., & Zhang, H. (2017). Health Monitoring and Evaluation of Long-Span Bridges Based on Sensing and Data Analysis: A Survey, Sensors, 17(3), 603.