Alpaydin, E. (2014). Introduction to machine learning. The MIT Press, USA, ISBN: 0262028182,9780262028189.
Annamdas, V. G. M., Bhalla, S., & Soh, C. K. (2017). Applications of structural health monitoring technology in Asia. Structural Health Monitoring, 16(3), 324-346, DOI: 10.1177/1475921716653278.
Barner, K. E., & Arce, G. R. (1998). 21 Order-statistic filtering and smoothing of time-series: Part II, Handbook of Statistics, Elsevier, 17, 555-602, https://doi.org/10.1016/S0169-7161(98)17023-2.
Çelebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., & Wilson, S. (1999). GPS Monitoring of Dynamic Behavior of Long-Period Structures. Earthquake Spectra, 15(1), 55-66. doi:10.1193/1.1586028.
Çelebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., & Wilson, S. (2003). GPS Monitoring of Structures: Recent Advances. In: Zschau, J., Küppers, A. (eds) Early Warning Systems for Natural Disaster Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55903-7_94.
Chen, G., Lin, X., Yue, Q., & Liu, H. (2016). Study on separation and forecast of long term deflection based on time series analysis. J. Tongji Univ. Nat. Sci. Ed., 44, 962–968.
Deng, G., & Cahill, L. W. (1993). An adaptive gaussian filter for noise reduction and edge detection, IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, 1615-1619, DOI: 10.1109/NSSMIC.1993.373563.
Esteban Vazquez, G., Ramon Gaxiola-Camacho J., Bennett, R., Michel Guzman-Acevedo, G., & Gaxiola-Camacho, I. E. (2017). Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology. Measurement, 110, 146-153, DOI; 10.1016/j.measurement.2017.06.026.
Frohlich, H., Chapelle, O., & Scholkopf, B. (2003). Feature Selection for Support Vector Machines by Means of Genetic Algorithm. Paper presented at the proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, DOI: 10.1109/TAI.2003.1250182.
Górski, P. (2015). Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using Random Decrement Method. Engineering Structures, 83, 30-49, DOI: 10.1016/j.engstruct.2014.11.006.
Harvey, A. C., & Trimbur, T. M. (2003). General model-based filters for extracting cycles and trends in economic time series. Review of Economics and Statistics, 85(2), 244-255.
Hohensinn, R., Häberling, S., & Geiger, A. (2020). Dynamic displacements from high-rate GNSS: Error modeling and vibration detection. Measurement, 157, DOI: 10.1016/j.measurement.2020.107655.
Im, S. B., Hurlebaus S., & Kang, Y. J. (2013). Summary review of GPS technology for structural health monitoring. Journal of Structural Engineering, 139(10), 1653-1664, DOI: 10.1061/(ASCE)ST.1943-541X.0000475.
Lai, J., Qiu, J., Feng, Z., Chen, J., & Fan, H. (2016). Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks. Computational Intelligence and Neurosciences, 2016, 1-16. https://doi.org/10.1155/2016/6708183.
Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, Transactions of the ASME–Journal of Basic Engineering, 82(D): 35-45, doi:10.1115/1.3662552.
Kaloop, M. R., & Li, H. (2009). Monitoring of bridge deformation using GPS technique. KSCE Journal of Civil Engineering, 13(6), 423431. https://doi.org/10.1007/s12205-009-0423-y.
Kaloop, M. R., Hussan, M., & Kim, D. (2019). Time-series analysis of GPS measurements for long-span bridge movements using wavelet and model prediction techniques. Advances in Space Research, 63(11), 3505-3521.
Lima, J., & Casaca, J. (2008). Smoothing GNSS time series with asymmetric simple moving averages. Lnec, Lisbon, 12-15 May, 1-8.
Larocca, A. P. C., Schaal, R. E., Santos, M. C., & Langley, R. B. (2006). Analyzing the dynamic behavior of suspension bridge towers using GPS. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29 September, Fort Worth, TX, USA.
Malleswaran, M., Vaidehi, V., & Sivasankari, N. (2014). A novel approach to the integration of GPS and INS using recurrent neural networks with evolutionary optimization techniques. Aerospace Science and Technology, 32(1), 169–179, DOI: 10.1016/j.ast.2013.09.011.
Meng, X., Xi, R. & Xie, Y. (2018). Dynamic characteristic of the forth road bridge estimated with GeoSHM, J. Glob. Position. Syst, 16(4(. )https://doi.org/10.1186/s41445-018-0014-7.
Moschas, F., & Stiros, S. (2015). Dynamic Deflections of a Stiff Footbridge Using 100-Hz GNSS and Accelerometer Data. Journal of Surveying Engineering, DOI: 10.1061/(ASCE)SU.1943-5428.0000146.
Moschas, F., & Stiros, S. (2011). Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Engineering Structures, 33, 10–17.
Moschas, F., & Stiros, S. C. (2013). Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement, 46(4), 1488–1506. DOI: 10.1016/j.measurement.2012.12.015.
Topal, G. O., & Akpinar, B. (2022). High rate GNSS kinematic PPP method performance for monitoring the engineering structures: Shake table tests under different satellite configurations. Measurement, 189, 110451.
Ting-Hua, Y., Hong-Nan, L., & Ming G. (2012). Recent research and applications of GPS-based monitoring technology for high-rise structures. Structural Control and Health Monitoring, DOI: 10.1002/stc.1501.
Wei, F., Jinguang, J., Shuangqiu, L., Yilin, G., Yifeng, T., Yanan, T., Peihui, Y., Haiyong, L., & Jingnan, L. (2020). Wei Fang, Jinguang Jiang, Shuangqiu Lu, Yilin Gong, Yifeng Tao, Yanan Tang, Peihui Yan, Haiyong Luo and Jingnan Liu. A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outages. Remote Sensing, 12(2) 256, DOI: 10.3390/rs12020256.
Xin, J., Zhou, J., Yang, S. X., Li, X., Wang, Y. (2018). Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model. Sensors, 18(1), 298. https://doi.org/10.3390/s18010298.
Yu, J., Meng, X., Shao, X., Yan, B., & Yang, L. (2014). Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing. Engineering Structures, 81, 432-443, https://doi.org/10.1016/j.engstruct.2014.10.010.
Yi, T. H., Li, H. N., & Gu, M. (2013). Recent research and applications of GPS‐based monitoring technology for high‐rise structures. Structural control and health monitoring, 20(5), 649-670. https://doi.org/10.1002/stc.1501.
Yu, J., Yan, B., Meng, X., Shao, X., & Ye, H. (2016). Measurement of Bridge Dynamic Responses Using Network-Based Real-Time Kinematic GNSS Technique. Journal of Surveying Engineering, 143(3) DOI: 10.1061/(ASCE)SU.1943-5428.0000167.
Zhou, J., Li, X., Xia, R., Yang, J., & Zhang, H. (2017). Health Monitoring and Evaluation of Long-Span Bridges Based on Sensing and Data Analysis: A Survey, Sensors, 17(3), 603.